[Une amélioration des modèles de type Gurson pour les mileux poreux par utilisation des champs tests d'Eshelby]
New expressions of the macroscopic criteria of perfectly plastic rigid matrix containing prolate and oblate cavities are presented. The proposed approach, derived in the framework of limit analysis, consists in the consideration of Eshelby-like trial velocity fields for the determination of the macroscopic dissipation. It is shown that the obtained results significantly improve existing criteria for ductile porous media. Moreover, for low stress triaxialities, these new results also agree perfectly with the (nonlinear) Hashin–Shtrikhman bound established by Ponte-Castañeda and Suquet.
On présente de nouvelles expressions du critère macroscopique de milieux poreux constitués d'une matrice rigide parfaitement plastique contenant des cavités allongées ou aplaties. L'approche proposée, formulée dans le cadre de l'analyse limite, repose sur la considération de champs test de vitesse de type Eshelby pour la détermination de la dissipation macroscopique. On démontre que les résultats obtenus améliorent de manière significative les critères de milieux poreux ductiles existants. De plus, pour les faibles triaxialités de contrainte, ces nouveaux résultats s'accordent aussi parfaitement avec les bornes (non linéaires) d'Hashin–Shtrikhman établies par Ponte-Castañeda et par Suquet.
Accepté le :
Publié le :
Mots-clés : Mécanique des solides numériques, Métaux ductiles poreux, Critère de Gurson généralisé, Cavités allongées et aplaties, Champ de vitesse d'Eshelby, Analyse limite
Vincent Monchiet 1 ; Eric Charkaluk 1 ; Djimedo Kondo 1
@article{CRMECA_2007__335_1_32_0, author = {Vincent Monchiet and Eric Charkaluk and Djimedo Kondo}, title = {An improvement of {Gurson-type} models of porous materials by using {Eshelby-like} trial velocity fields}, journal = {Comptes Rendus. M\'ecanique}, pages = {32--41}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2007}, doi = {10.1016/j.crme.2006.12.002}, language = {en}, }
TY - JOUR AU - Vincent Monchiet AU - Eric Charkaluk AU - Djimedo Kondo TI - An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields JO - Comptes Rendus. Mécanique PY - 2007 SP - 32 EP - 41 VL - 335 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2006.12.002 LA - en ID - CRMECA_2007__335_1_32_0 ER -
%0 Journal Article %A Vincent Monchiet %A Eric Charkaluk %A Djimedo Kondo %T An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields %J Comptes Rendus. Mécanique %D 2007 %P 32-41 %V 335 %N 1 %I Elsevier %R 10.1016/j.crme.2006.12.002 %G en %F CRMECA_2007__335_1_32_0
Vincent Monchiet; Eric Charkaluk; Djimedo Kondo. An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields. Comptes Rendus. Mécanique, Volume 335 (2007) no. 1, pp. 32-41. doi : 10.1016/j.crme.2006.12.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.12.002/
[1] Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criterion and flow rules for porous ductile media, J. Engrg. Mat. Technol., Volume 99 (1977), pp. 2-15
[2] G. Perrin, Contribution à l'Étude Théorique et Numérique de la Rupture Ductile des Métaux, PhD thesis, Ecole Polytechnique Palaiseau, France, 1992
[3] The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 45-71
[4] On bounds for the overall potential of power law materials containing voids with an arbitrary shape, Mech. Res. Commun., Volume 19 (1992), pp. 51-58
[5] Microporomechanics, Wiley, New York, 2006
[6] Recent extensions of Gurson's model for porous ductile metals (P. Suquet, ed.), Continuum Micromechanics, Springer-Verlag, Berlin/New York, 1997, pp. 61-130
[7] A micromechanical approach of damage in viscoplastic materials by evolution in size, shape and distribution of voids, Comput. Methods Appl. Mech. Engrg., Volume 183 (2000), pp. 223-246
[8] Approximate models for ductile metals containing non-spherical voids—case of axisymmetric prolate ellipsoidal cavities, J. Mech. Phys. Solids, Volume 41 (1993) no. 11, pp. 1723-1754
[9] Approximate models for ductile metals containing non-spherical voids—case of axisymmetric oblate ellipsoidal cavities, J. Engrg. Mat. Technol., Volume 116 (1994), pp. 290-297
[10] The determination of the elastic field of an ellipsoidal inclusion, and related problem, Proc. R. Soc. Lond. A, Volume 241 (1957), pp. 376-396
[11] Micromechanics of Defects in Solids, Martinus Nijhoff, Dordrecht, 1987
[12] Axisymmetric deformation of power-law solids containing a dilute concentration of aligned spheroidal voids, J. Mech. Phys. Solids, Volume 40 (1992), pp. 1805-1836
[13] Approximate yield criteria for anisotropic metals with non spherical voids, C. R. Mecanique, Volume 334 (2006), pp. 431-439
[14] Nonlinear composites, Adv. Appl. Mech., Volume 34 (1998), pp. 171-302
- Shakedown Analysis of Porous Mohr–Coulomb Materials: A Computational Homogenization Approach, International Journal of Geomechanics, Volume 25 (2025) no. 5 | DOI:10.1061/ijgnai.gmeng-9750
- A new yield criterion based constitutive model for porous materials, International Journal of Mechanical Sciences, Volume 274 (2024), p. 109250 | DOI:10.1016/j.ijmecsci.2024.109250
- A multiscale constitutive model for metal forming of dual phase titanium alloys by incorporating inherent deformation and failure mechanisms, Modelling and Simulation in Materials Science and Engineering, Volume 30 (2022) no. 2, p. 025008 | DOI:10.1088/1361-651x/ac11ba
- On the macroscopic strength criterion of ductile nanoporous materials, International Journal of Engineering Science, Volume 162 (2021), p. 103475 | DOI:10.1016/j.ijengsci.2021.103475
- A variational-based homogenization model for plastic shakedown analysis of porous materials with a large range of porosity, International Journal of Mechanical Sciences, Volume 199 (2021), p. 106429 | DOI:10.1016/j.ijmecsci.2021.106429
- A void evolution model accounting for stress triaxiality, Lode parameter and effective strain for hot metal forming, International Journal of Mechanical Sciences, Volume 168 (2020), p. 105309 | DOI:10.1016/j.ijmecsci.2019.105309
- A CPFEM based study to understand the void growth in high strength dual-phase titanium alloy (Ti-10V-2Fe-3Al), International Journal of Plasticity, Volume 122 (2019), p. 188 | DOI:10.1016/j.ijplas.2019.07.002
- Analytical expression of mechanical fields for Gurson type porous models, International Journal of Solids and Structures, Volume 163 (2019), p. 25 | DOI:10.1016/j.ijsolstr.2018.11.034
- Thermoelastic-plastic flow equations in general coordinates, Journal of Physics and Chemistry of Solids, Volume 119 (2018), p. 288 | DOI:10.1016/j.jpcs.2018.03.026
- Shakedown of porous materials, International Journal of Plasticity, Volume 95 (2017), p. 123 | DOI:10.1016/j.ijplas.2017.04.003
- On the dynamic behavior of porous ductile solids containing spheroidal voids, International Journal of Solids and Structures, Volume 97-98 (2016), p. 150 | DOI:10.1016/j.ijsolstr.2016.07.033
- Limit analysis and homogenization of porous materials with Mohr-Coulomb matrix. I: Theoretical formulation, Journal of the Mechanics and Physics of Solids, Volume 91 (2016), pp. 145-171 | DOI:10.1016/j.jmps.2016.01.018 | Zbl:1482.74068
- Recent Trends in the Development of Gurson’s Model, Recent Trends in Fracture and Damage Mechanics (2016), p. 417 | DOI:10.1007/978-3-319-21467-2_17
- A Stress-Based Variational Model for Ductile Porous Materials and Its Extension Accounting for Lode Angle Effects, Direct Methods for Limit and Shakedown Analysis of Structures (2015), p. 1 | DOI:10.1007/978-3-319-12928-0_1
- Limit Analysis and Macroscopic Strength of Porous Materials with Coulomb Matrix, Direct Methods for Limit and Shakedown Analysis of Structures (2015), p. 27 | DOI:10.1007/978-3-319-12928-0_2
- Macroscopic criterion for ductile porous materials based on a statically admissible microscopic stress field, International Journal of Plasticity, Volume 70 (2015), p. 60 | DOI:10.1016/j.ijplas.2015.02.012
- A 3-D model for void evolution in viscous materials under large compressive deformation, International Journal of Plasticity, Volume 74 (2015), p. 192 | DOI:10.1016/j.ijplas.2015.06.012
- A bipotential-based limit analysis and homogenization of ductile porous materials with non-associated Drucker-Prager matrix, Journal of the Mechanics and Physics of Solids, Volume 77 (2015), pp. 1-26 | DOI:10.1016/j.jmps.2014.12.004 | Zbl:1349.74068
- Constitutive behavior of porous ductile materials accounting for micro-inertia and void shape, Mechanics of Materials, Volume 80 (2015), p. 324 | DOI:10.1016/j.mechmat.2013.12.006
- Homogenization of saturated double porous media with Eshelby-like velocity field, Acta Geophysica, Volume 62 (2014) no. 5, p. 1146 | DOI:10.2478/s11600-014-0231-8
- Macroscopic Modeling of Porous Nonassociated Frictional Materials, Direct Methods for Limit States in Structures and Materials (2014), p. 181 | DOI:10.1007/978-94-007-6827-7_9
- A stress-based variational model for ductile porous materials, International Journal of Plasticity, Volume 55 (2014), p. 133 | DOI:10.1016/j.ijplas.2013.10.003
- Macroscopic yield criteria for ductile materials containing spheroidal voids: An Eshelby-like velocity fields approach, Mechanics of Materials, Volume 72 (2014), p. 1 | DOI:10.1016/j.mechmat.2013.05.006
- Numerical homogenization of nonlinear composites with a polarization-based FFT iterative scheme, Computational Materials Science, Volume 79 (2013), p. 276 | DOI:10.1016/j.commatsci.2013.04.035
- Assessment of hollow spheroid models for ductile failure prediction by limit analysis and conic programming, European Journal of Mechanics. A. Solids, Volume 38 (2013), pp. 100-114 | DOI:10.1016/j.euromechsol.2012.08.002 | Zbl:1347.74076
- Strength properties of a Drucker–Prager porous medium reinforced by rigid particles, International Journal of Plasticity, Volume 51 (2013), p. 218 | DOI:10.1016/j.ijplas.2013.05.003
- A Gurson-type model accounting for void size effects, International Journal of Solids and Structures, Volume 50 (2013) no. 2, p. 320 | DOI:10.1016/j.ijsolstr.2012.09.005
- Limit Analysis and Conic Programming for Gurson-Type Spheroid Problems, Limit State of Materials and Structures (2013), p. 207 | DOI:10.1007/978-94-007-5425-6_12
- Improved criteria for ductile porous materials having a Green type matrix by using Eshelby-like velocity fields, Theoretical and Applied Fracture Mechanics, Volume 67-68 (2013), p. 14 | DOI:10.1016/j.tafmec.2014.01.003
- Numerical modeling of elasto-plastic porous materials with void shape effects at finite deformations, Composites Part B: Engineering, Volume 43 (2012) no. 6, p. 2544 | DOI:10.1016/j.compositesb.2011.12.011
- Plastic limit state of the hollow sphere model with non-associated Drucker–Prager material under isotropic loading, Computational Materials Science, Volume 62 (2012), p. 210 | DOI:10.1016/j.commatsci.2012.05.048
- Multi-scale modelling of the trabecular bone elastoplastic behaviour under compression loading, European Journal of Computational Mechanics, Volume 21 (2012) no. 3-6, p. 254 | DOI:10.1080/17797179.2012.731255
- Exact solution of a plastic hollow sphere with a Mises-Schleicher matrix, International Journal of Engineering Science, Volume 51 (2012), pp. 168-178 | DOI:10.1016/j.ijengsci.2011.10.007 | Zbl:1423.74333
- Computational homogenization of elasto-plastic porous metals, International Journal of Plasticity, Volume 29 (2012), p. 102 | DOI:10.1016/j.ijplas.2011.08.005
- Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials, International Journal of Solids and Structures, Volume 49 (2012) no. 11-12, p. 1325 | DOI:10.1016/j.ijsolstr.2012.02.006
- A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—I: Limit-analysis of some representative cell, Journal of the Mechanics and Physics of Solids, Volume 60 (2012) no. 5, p. 1020 | DOI:10.1016/j.jmps.2011.11.008
- A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—II: Determination of yield criterion parameters, Journal of the Mechanics and Physics of Solids, Volume 60 (2012) no. 5, p. 1037 | DOI:10.1016/j.jmps.2012.01.010
- A micromechanics-based modification of the Gurson criterion by using Eshelby-like velocity fields, European Journal of Mechanics. A. Solids, Volume 30 (2011) no. 6, pp. 940-949 | DOI:10.1016/j.euromechsol.2011.05.008 | Zbl:1278.74024
- Macroscopic Yield Criterion for Ductile Materials Containing Randomly Oriented Spheroidal Cavities, International Journal of Damage Mechanics, Volume 20 (2011) no. 8, p. 1198 | DOI:10.1177/1056789510395552
- Numerical limit analysis bounds for ductile porous media with oblate voids, Mechanics Research Communications, Volume 38 (2011) no. 5, pp. 350-354 | DOI:10.1016/j.mechrescom.2011.02.001 | Zbl:1272.74161
- Numerical implementation of a recent improved Gurson-type model and application to ductile fracture, Computational Materials Science, Volume 47 (2010) no. 4, p. 901 | DOI:10.1016/j.commatsci.2009.11.021
- Closed-form solutions for the hollow sphere model with Coulomb and Drucker–Prager materials under isotropic loadings, Comptes Rendus. Mécanique, Volume 337 (2009) no. 5, p. 260 | DOI:10.1016/j.crme.2009.06.030
- Calibration and evaluation of a combined fracture model of microvoid growth that may compete with shear in the polycrystalline microstructure by means of evolutionary algorithms, Computational Materials Science, Volume 45 (2009) no. 1, p. 133 | DOI:10.1016/j.commatsci.2008.02.031
- A finite-strain model for anisotropic viscoplastic porous media. I : Theory, European Journal of Mechanics. A. Solids, Volume 28 (2009) no. 3, pp. 387-401 | DOI:10.1016/j.euromechsol.2008.11.002 | Zbl:1158.74445
- Constitutive models for power-law viscous solids containing spherical voids, International Journal of Plasticity, Volume 25 (2009) no. 1, pp. 134-160 | DOI:10.1016/j.ijplas.2007.11.003 | Zbl:1277.74008
- Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids, International Journal of Plasticity, Volume 24 (2008) no. 7, pp. 1158-1189 | DOI:10.1016/j.ijplas.2007.08.008 | Zbl:1421.74023
- A homogenization-based constitutive model for isotropic viscoplastic porous media, International Journal of Solids and Structures, Volume 45 (2008) no. 11-12, pp. 3392-3409 | DOI:10.1016/j.ijsolstr.2008.02.007 | Zbl:1169.74384
- Non‐linear Micro‐cracked Geomaterials: Anisotropic Damage and Coupling with Plasticity, Multiscale Modeling of Heterogenous Materials (2008), p. 177 | DOI:10.1002/9780470611364.ch10
- Determination of the Macroscopic Plastic Yield Behaviour of Microcracked Materials, Particle and Continuum Aspects of Mesomechanics (2007), p. 789 | DOI:10.1002/9780470610794.ch81
Cité par 49 documents. Sources : Crossref, zbMATH
Commentaires - Politique