A two-dimensional numerical study of natural convection flow in an air filled enclosure of aspect ratio is investigated in this Note. The numerical method is based on a second order finite volume scheme and a projection method. A full multigrid technique is used to accelerate the convergence of the Poisson pressure equation. The multigrid procedure is briefly described and the critical Rayleigh number above which the flow becomes unsteady is determined.
Nous présentons dans ce papier une étude numérique de convection naturelle bidimensionnelle dans une cavité de rapport de forme , remplie d'air. La méthode numérique est basée sur un schéma de type volumes finis du second ordre et une méthode de projection. Une approche multigrille est utilisée pour accélérer la convergence de l'équation de Poisson. La méthode est brièvement décrite et le nombre de Rayleigh critique au-delà duquel l'écoulement devient instationnaire est déterminé.
Accepted:
Published online:
Mot clés : Mécanique des fluides numérique, Écoulement de convection naturelle, Approche multigrille
Nader Ben Cheikh 1; Brahim Ben Beya 1; Taieb Lili 1
@article{CRMECA_2007__335_2_113_0, author = {Nader Ben Cheikh and Brahim Ben Beya and Taieb Lili}, title = {Natural convection flow in a tall enclosure using a multigrid method}, journal = {Comptes Rendus. M\'ecanique}, pages = {113--118}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2007}, doi = {10.1016/j.crme.2007.01.004}, language = {en}, }
TY - JOUR AU - Nader Ben Cheikh AU - Brahim Ben Beya AU - Taieb Lili TI - Natural convection flow in a tall enclosure using a multigrid method JO - Comptes Rendus. Mécanique PY - 2007 SP - 113 EP - 118 VL - 335 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2007.01.004 LA - en ID - CRMECA_2007__335_2_113_0 ER -
Nader Ben Cheikh; Brahim Ben Beya; Taieb Lili. Natural convection flow in a tall enclosure using a multigrid method. Comptes Rendus. Mécanique, Volume 335 (2007) no. 2, pp. 113-118. doi : 10.1016/j.crme.2007.01.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.01.004/
[1] Multigrid Methods and Applications, Springer-Verlag, Berlin/New York, 1985
[2] Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Numer. Methods Fluids, Volume 11 (1990), pp. 189-207
[3] Simulation of time-dependent flow in cavities with the additive-correction multigrid method, Part I: Mathematical formulation, Numer. Heat Transfer B, Volume 30 (1996), pp. 341-350
[4] Multi-level adaptive solutions to boundary-value problems, Math. Comput., Volume 31 (1977), pp. 333-390
[5] et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994
[6] Towards algebraic multigrid for elliptic problems of second order, Computing, Volume 55 (1995), pp. 379-393
[7] Computational predictability of time-dependent natural convection flows in enclosures (including a benchmark solution), Int. J. Numer. Methods Fluids, Volume 40 (2002), pp. 953-980
[8] An extended Chebyshev pseudo-spectral benchmark for the 8:1 differentially heated cavity, Int. J. Numer. Methods Fluids, Volume 40 (2002), pp. 981-998
[9] Methods for Fluid Flow, Springer-Verlag, Berlin/New York, 1983
[10] Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations, SIAM J. Numer. Anal., Volume 37 (2000), pp. 799-826
[11] Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980
[12] Étude numérique du couplage de la convection naturelle avec le rayonnement de surfaces en cavité carrée remplie d'air, C. R. Mécanique, Volume 334 (2006), pp. 48-57
Cited by Sources:
Comments - Policy