[Écoulement de convection naturelle dans une longue cavité à l'aide d'une méthode multigrille]
Nous présentons dans ce papier une étude numérique de convection naturelle bidimensionnelle dans une cavité de rapport de forme
A two-dimensional numerical study of natural convection flow in an air filled enclosure of aspect ratio
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides numérique, Écoulement de convection naturelle, Approche multigrille
Nader Ben Cheikh 1 ; Brahim Ben Beya 1 ; Taieb Lili 1
@article{CRMECA_2007__335_2_113_0, author = {Nader Ben Cheikh and Brahim Ben Beya and Taieb Lili}, title = {Natural convection flow in a tall enclosure using a multigrid method}, journal = {Comptes Rendus. M\'ecanique}, pages = {113--118}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2007}, doi = {10.1016/j.crme.2007.01.004}, language = {en}, }
TY - JOUR AU - Nader Ben Cheikh AU - Brahim Ben Beya AU - Taieb Lili TI - Natural convection flow in a tall enclosure using a multigrid method JO - Comptes Rendus. Mécanique PY - 2007 SP - 113 EP - 118 VL - 335 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2007.01.004 LA - en ID - CRMECA_2007__335_2_113_0 ER -
Nader Ben Cheikh; Brahim Ben Beya; Taieb Lili. Natural convection flow in a tall enclosure using a multigrid method. Comptes Rendus. Mécanique, Volume 335 (2007) no. 2, pp. 113-118. doi : 10.1016/j.crme.2007.01.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.01.004/
[1] Multigrid Methods and Applications, Springer-Verlag, Berlin/New York, 1985
[2] Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Int. J. Numer. Methods Fluids, Volume 11 (1990), pp. 189-207
[3] Simulation of time-dependent flow in cavities with the additive-correction multigrid method, Part I: Mathematical formulation, Numer. Heat Transfer B, Volume 30 (1996), pp. 341-350
[4] Multi-level adaptive solutions to boundary-value problems, Math. Comput., Volume 31 (1977), pp. 333-390
[5] et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994
[6] Towards algebraic multigrid for elliptic problems of second order, Computing, Volume 55 (1995), pp. 379-393
[7] Computational predictability of time-dependent natural convection flows in enclosures (including a benchmark solution), Int. J. Numer. Methods Fluids, Volume 40 (2002), pp. 953-980
[8] An extended Chebyshev pseudo-spectral benchmark for the 8:1 differentially heated cavity, Int. J. Numer. Methods Fluids, Volume 40 (2002), pp. 981-998
[9] Methods for Fluid Flow, Springer-Verlag, Berlin/New York, 1983
[10] Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations, SIAM J. Numer. Anal., Volume 37 (2000), pp. 799-826
[11] Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980
[12] Étude numérique du couplage de la convection naturelle avec le rayonnement de surfaces en cavité carrée remplie d'air, C. R. Mécanique, Volume 334 (2006), pp. 48-57
- Numerical study of obstacle geometry effect on the vortex shedding suppression and aerodynamic characteristics, International Journal of Numerical Methods for Heat Fluid Flow, Volume 30 (2020) no. 2, p. 469 | DOI:10.1108/hff-01-2016-0019
- Natural Convection in a Square Enclosure with a Conducting Rectangular Shape Positioned at Different Horizontal Locations, High Temperature, Volume 57 (2019) no. 4, p. 539 | DOI:10.1134/s0018151x19040205
- Numerical study of natural convection in a rectangular cavity with variation of cavity aspect ratios and cavity inclination angles, IOP Conference Series: Materials Science and Engineering, Volume 576 (2019) no. 1, p. 012044 | DOI:10.1088/1757-899x/576/1/012044
- Lattice Boltzmann Simulation of Natural Convection in a Fractured Petroleum Reservoir Domain: Single-Phase and Multi-Phases Investigations, The Open Petroleum Engineering Journal, Volume 11 (2018) no. 1, p. 48 | DOI:10.2174/1874834101811010048
- Numerical study of vortex shedding suppression and aerodynamic characteristics of three obstacle configurations having two shapes, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 39 (2017) no. 7, p. 2519 | DOI:10.1007/s40430-017-0725-9
- Effect of thermal conductivity ratio on flow features and convective heat transfer, Particulate Science and Technology, Volume 35 (2017) no. 5, p. 565 | DOI:10.1080/02726351.2016.1180337
- Numerical investigation of thermal radiation effects on open cavity with discrete heat sources, International Journal of Numerical Methods for Heat Fluid Flow, Volume 23 (2013) no. 4, pp. 649-661 | DOI:10.1108/09615531311323791 | Zbl:1356.80014
- Two-dimensional simulation of thermal loading with horizontal heat sources, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Volume 226 (2012) no. 5, p. 1302 | DOI:10.1177/0954406211419613
- , 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference (2010) | DOI:10.2514/6.2010-5066
- Mixed convection in a double lid-driven cubic cavity, International Journal of Thermal Sciences, Volume 48 (2009) no. 7, p. 1265 | DOI:10.1016/j.ijthermalsci.2008.11.020
- Unified Treatment of Natural Convection in Tall Narrow and Flat Wide Rectangular Enclosures, Numerical Heat Transfer, Part A: Applications, Volume 54 (2008) no. 8, p. 763 | DOI:10.1080/10407780802424296
Cité par 11 documents. Sources : Crossref, zbMATH
Commentaires - Politique