In the field of the metallic alloy development, the main industrial goals are the control of the metallurgical structure and defects. Hydrodynamic movements in the liquid phase have a significant influence on properties of the solidified product.
We focus our attention on two major effects influenced by forced convection induced by a travelling magnetic field: the macrosegregation and the grain structure for Al-3.5 wt% Ni alloys. We show that this configuration can control macrosegregations and that, moreover, the dendritic primary spacing maybe modified by varying the applied field.
With regards to the grain structure, we exhibit the effect of the forced convection on the microstructure. For the equiaxed regime growth, the effect of the travelling magnetic field on the constitutional undercooling and on the refiner distribution induces an equiaxed to an elongated transition. This mechanism enhances the nucleation and the growth of equiaxed grains. In the case of non-refined alloys, a mode of elongated free grains is obtained most likely because of fragmentation.
Dans le domaine de l'élaboration des alliages métalliques, les principaux enjeux industriels résident dans la possibilité de maîtriser la structure métallurgique ainsi que les défauts qui surviennent lors de la phase de solidification. Lors de la solidification, les mouvements hydrodynamiques dans la phase liquide ont une influence importante sur les propriétés du produit solidifié.
Notre attention s'est portée sur deux effets majeurs influencés par la présence de convection forcée par champ magnétique glissant : la macroségrégation et la structure de grains pour un alliage d'Al- Ni en présence ou non de particules affinantes. Nous montrons que dans le cas de l'alliage choisi, la macroségrégation peut-être contrôlée et que de plus, l'espacement primaire dendritique est modifié en fonction du champ appliqué.
En ce qui concerne les structures de grains, nous montrons l'influence de la convection forcée sur le développement de la microstructure. Dans le cas d'une solidification de type équiaxe, l'influence de la convection forcée sur la couche solutale et sur la distribution des particules inoculantes montre une transition vers un régime de grains allongés. Dans le cas des alliages non affinés, un régime de grains libres allongés a pu être obtenu probablement à cause de la fragmentation.
Mot clés : Mécanique des fluides, Solidification dirigée, Dendrites, Grains colonnaires, Équiaxe, Champ magnétique glissant, Convection naturelle et forcée
Kader Zaïdat 1; Nathalie Mangelinck-Noël 2; René Moreau 1
@article{CRMECA_2007__335_5-6_330_0, author = {Kader Za{\"\i}dat and Nathalie Mangelinck-No\"el and Ren\'e Moreau}, title = {Control of melt convection by a travelling magnetic field during the directional solidification of {Al{\textendash}Ni} alloys}, journal = {Comptes Rendus. M\'ecanique}, pages = {330--335}, publisher = {Elsevier}, volume = {335}, number = {5-6}, year = {2007}, doi = {10.1016/j.crme.2007.05.010}, language = {en}, }
TY - JOUR AU - Kader Zaïdat AU - Nathalie Mangelinck-Noël AU - René Moreau TI - Control of melt convection by a travelling magnetic field during the directional solidification of Al–Ni alloys JO - Comptes Rendus. Mécanique PY - 2007 SP - 330 EP - 335 VL - 335 IS - 5-6 PB - Elsevier DO - 10.1016/j.crme.2007.05.010 LA - en ID - CRMECA_2007__335_5-6_330_0 ER -
%0 Journal Article %A Kader Zaïdat %A Nathalie Mangelinck-Noël %A René Moreau %T Control of melt convection by a travelling magnetic field during the directional solidification of Al–Ni alloys %J Comptes Rendus. Mécanique %D 2007 %P 330-335 %V 335 %N 5-6 %I Elsevier %R 10.1016/j.crme.2007.05.010 %G en %F CRMECA_2007__335_5-6_330_0
Kader Zaïdat; Nathalie Mangelinck-Noël; René Moreau. Control of melt convection by a travelling magnetic field during the directional solidification of Al–Ni alloys. Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 330-335. doi : 10.1016/j.crme.2007.05.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.010/
[1] Directional solidification of refined Al-3.5 wt% Ni under natural convection and under a forced flow driven by a travelling magnetic field, J. Crystal Growth, Volume 275 (2005), pp. 1501-1505
[2] Macroscopic stability of a planar, cellular or dendritic interface during directional freezing, J. Crystal Growth, Volume 20 (1973), pp. 121-124
[3] Directional solidification of Al-1.5wt%Ni alloys under diffusion transport in space and fluid-flow localisation on Earth, J. Crystal Growth, Volume 281 (2005), pp. 654-668
[4] Natural convection in directional dendritic solidification of metallic alloys I. Macroscopic effects, Acta Metallurgica, Volume 37 (1989), pp. 1143-1157
[5] K. Zaïdat, N. Mangelinck-Noel, R. Moreau, Control of the solidification of Al–Ni alloys using a travelling magnetic field: Macrosegregations, in: Proceedings of Modelling Casting Welding and Advanced Solidification Processes XI, Nice, July 2006, in press
[6] Modification of interdendritic convection in directional solidification by a uniform magnetic field, Acta Mater., Volume 46 (1998), pp. 4067-4079
[7] Steady state columnar and equiaxed growth of dendrites and eutectic, Mater. Sci. Engrg., Volume 65 (1984), pp. 75-83
[8] A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification, Metallurg. Mater. Trans. A, Volume 34A (2003), pp. 1657-1674
[9] Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al–Ti–B, Acta Mater., Volume 48 (2000), p. 2823
Cited by Sources:
Comments - Policy