Comptes Rendus
Consistency of homogenization schemes in linear poroelasticity
Comptes Rendus. Mécanique, Volume 336 (2008) no. 8, pp. 636-642.

In view of extending classical micromechanics of poroelasticity to the non-saturated regime, one has to deal with different pore stresses which may be affected by the size and the shape of the pores. Introducing the macrostrain and these pore stresses as loading parameters, the macrostress of a representative volume element of a porous material can be derived by means of Levin's theorem or by means of the direct formulation of the stress average rule, respectively. A consistency requirement for a given homogenization scheme is obtained from the condition that the two approaches should yield identical results. Classical approaches (Mori–Tanaka scheme, self-consistent scheme) are shown to be only conditionally consistent. In contrast, the Ponte Castañeda–Willis scheme proves to provide consistent descriptions both of porous matrix-inclusion composites and of porous polycrystals.

En vue d'étendre l'approche micromécanique de la poroélasticité dans le régime non saturé, il convient de prendre en compte différentes contraintes dans les pores, en fonction de leur forme et de leur taille. En adoptant la déformation macroscopique et ces contraintes de pores comme paramètres de chargement, la contrainte macroscopique peut être formulée à partir du théorème de Levin, ou bien en explicitant directement la règle de moyenne sur les contraintes. Une condition de cohérence du schéma d'homogénéisation retenu est obtenue en écrivant l'égalité des résultats de ces deux approches. On montre que les schémas classiques (Mori–Tanaka et autocohérent) ne satisfont cette condition que dans des cas particuliers. En revanche, elle est toujours vérifiée par le schéma de Ponte Castañeda et Willis.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2008.06.003
Keywords: Porous media, Micromechanics, Levin's theorem, Mori–Tanaka scheme, Self-consistent scheme, Ponte Castañeda–Willis scheme
Mot clés : Milieux poreux, Micromécanique, Théorème de Levin, Schéma de Mori–Tanaka, Schéma autocohérent, Schéma Ponte Castañeda–Willis

Bernhard Pichler 1, 2; Luc Dormieux 2

1 Vienna University of Technology (TU Wien), Institute for Mechanics of Materials and Structures, Karlsplatz 13/202, A-1040 Vienna, Austria
2 LMSGC, Institut Navier, École nationale des ponts et chaussées, 6 et 8, avenue Blaise-Pascal, Champs-sur-Marne, 77455 Marne-la-Vallée, France
@article{CRMECA_2008__336_8_636_0,
     author = {Bernhard Pichler and Luc Dormieux},
     title = {Consistency of homogenization schemes in linear poroelasticity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {636--642},
     publisher = {Elsevier},
     volume = {336},
     number = {8},
     year = {2008},
     doi = {10.1016/j.crme.2008.06.003},
     language = {en},
}
TY  - JOUR
AU  - Bernhard Pichler
AU  - Luc Dormieux
TI  - Consistency of homogenization schemes in linear poroelasticity
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 636
EP  - 642
VL  - 336
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2008.06.003
LA  - en
ID  - CRMECA_2008__336_8_636_0
ER  - 
%0 Journal Article
%A Bernhard Pichler
%A Luc Dormieux
%T Consistency of homogenization schemes in linear poroelasticity
%J Comptes Rendus. Mécanique
%D 2008
%P 636-642
%V 336
%N 8
%I Elsevier
%R 10.1016/j.crme.2008.06.003
%G en
%F CRMECA_2008__336_8_636_0
Bernhard Pichler; Luc Dormieux. Consistency of homogenization schemes in linear poroelasticity. Comptes Rendus. Mécanique, Volume 336 (2008) no. 8, pp. 636-642. doi : 10.1016/j.crme.2008.06.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2008.06.003/

[1] T. Mori; K. Tanaka Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, Volume 21 (1973) no. 5, pp. 571-574

[2] Y. Benveniste A new approach to the application of Mori–Tanaka's theory in composite materials, Mechanics of Materials, Volume 6 (1987) no. 2, pp. 147-157

[3] A.V. Hershey The elasticity of an isotropic aggregate of anisotropic cubic crystals, Journal of Applied Mechanics (ASME), Volume 21 (1954), pp. 226-240

[4] E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Zeitschrift für Physik A Hadrons and Nuclei, Volume 151 (1958) no. 4, pp. 504-518 (Computation of the elastic constants of a polycrystal based on the constants of the single crystal) (in German)

[5] A. Zaoui, Matériaux hétérogènes et composites (Heterogeneous materials and composites), Lecture Notes. Ecole Polytechnique, Palaiseau, France, 1997 (in French)

[6] A. Zaoui Continuum micromechanics: Survey, Journal of Engineering Mechanics (ASCE), Volume 128 (2002) no. 8, pp. 808-816

[7] Y. Benveniste; G.J. Dvorak; T. Chen On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media, Journal of the Mechanics and Physics of Solids, Volume 39 (1991) no. 7, pp. 927-946

[8] V.M. Levin Thermal expansion coefficient of heterogeneous materials, Mekhanika Tverdogo Tela, Volume 2 (1967) no. 1, pp. 83-94

[9] N. Laws On the thermostatics of composite materials, Journal of the Mechanics and Physics of Solids, Volume 21 (1973) no. 1, pp. 7-17

[10] P. Ponte Castañeda; J.R. Willis The effect of spatial distribution on the effective behavior of composite materials and cracked media, Journal of the Mechanics and Physics of Solids, Volume 43 (1995) no. 12, pp. 1919-1951

[11] Z. Hashin; S. Shtrikman A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of Mechanics and Physics of Solids, Volume 11 (1963) no. 2, pp. 127-140

[12] L. Dormieux; D. Kondo; F.-J. Ulm Microporomechanics, John Wiley & Sons, 2006

[13] X. Chateau; L. Dormieux; Y. Xu Influence of geometry changes on drying-induced strains in a cracked solid, Comptes Rendus Mecanique, Volume 331 (2003) no. 10, pp. 679-686 (in French with an Abridged English version)

[14] L. Dormieux; J. Sanahuja; S. Maghous Influence of capillary effects on strength of non-saturated porous media, Comptes Rendus Mecanique, Volume 334 (2006) no. 1, pp. 19-24

[15] Z. Hashin Analysis of composite materials—a survey, Journal of Applied Mechanics, Transactions ASME, Volume 50 (1983) no. 3, pp. 481-505

[16] M. Ferrari Asymmetry and the high concentration limit of the Mori–Tanaka effective medium theory, Mechanics of Materials, Volume 11 (1991) no. 3, pp. 251-256

[17] R. Hill Elastic properties of reinforced solids, Journal of the Mechanics and Physics of Solids, Volume 11 (1963) no. 5, pp. 357-372

Cited by Sources:

Comments - Policy