The aim of this study is to improve the prediction of near-wall mean streamwise velocity profile
Accepté le :
Publié le :
Rafik Absi 1
@article{CRMECA_2009__337_3_158_0, author = {Rafik Absi}, title = {A simple eddy viscosity formulation for turbulent boundary layers near smooth walls}, journal = {Comptes Rendus. M\'ecanique}, pages = {158--165}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2009}, doi = {10.1016/j.crme.2009.03.010}, language = {en}, }
Rafik Absi. A simple eddy viscosity formulation for turbulent boundary layers near smooth walls. Comptes Rendus. Mécanique, Volume 337 (2009) no. 3, pp. 158-165. doi : 10.1016/j.crme.2009.03.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.010/
[1] Turbulence, MacGraw-Hill, 1975
[2] Contribution towards a Reynolds-stress closure for low-Reynolds-number turbulence, J. Fluid Mech., Volume 74 (1976), p. 593
[3] A First Course in Turbulence, MIT Press, 1972
[4] Analytical solutions for the modeled k-equation, ASME J. Appl. Mech., Volume 75 (2008), p. 044501
[5] On turbulent flow near a wall, J. Aero. Sci., Volume 23 (1956), p. 1007
[6] Turbulence models for near-wall and low Reynolds numbers flows: A review, AIAA J., Volume 23 (1985), p. 1308
[7] Reynolds-number effects on the structure of a turbulent channel flow, J. Fluid Mech., Volume 204 (1989), p. 57
[8] Turbulent statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., Volume 177 (1987), p. 133
[9] Direct numerical simulation of turbulent channel flow up to
[10] Reynolds number effect on wall turbulence: toward effective feedback control, Int. J. Heat Fluid Flow, Volume 23 (2002), p. 678
[11] Scaling of the energy spectra of turbulent channels, J. Fluid Mech., Volume 500 (2004), p. 135
[12] Scaling of velocity fluctuations in turbulent channels up to
[13] K. Iwamoto, Database of fully developed channel flow, THTLAB Internal Report No. ILR-0201, Dept. Mech. Eng., Univ. Tokyo, 2002
- Analysis of Water Flow through the Active Parts of an Abrasive Water Jet Machine: A Combined Analytical and CFD Approach, Processes, Volume 12 (2024) no. 8, p. 1551 | DOI:10.3390/pr12081551
- Turbulent Poiseuille flow modeling by modified Prandtl-van Driest mixing length, Acta Mechanica Sinica, Volume 39 (2023) no. 4 | DOI:10.1007/s10409-022-22066-x
- Analytical Eddy Viscosity Model for Turbulent Wave Boundary Layers: Application to Suspended Sediment Concentrations over Wave Ripples, Journal of Marine Science and Engineering, Volume 11 (2023) no. 1, p. 226 | DOI:10.3390/jmse11010226
- New scaling law for turbulent boundary layers with high surface mass transfer, Physics of Fluids, Volume 35 (2023) no. 9 | DOI:10.1063/5.0167741
- Friction factor from velocity profiles in smooth turbulent channel flows, E3S Web of Conferences, Volume 353 (2022), p. 02005 | DOI:10.1051/e3sconf/202235302005
- Suspended Sediments in Environmental Flows: Interpretation of Concentration Profiles Shapes, Hydrology, Volume 10 (2022) no. 1, p. 5 | DOI:10.3390/hydrology10010005
- Assessment of models for velocity distribution in turbulent smooth-wall open channel flows, ISH Journal of Hydraulic Engineering, Volume 28 (2022) no. sup1, p. 69 | DOI:10.1080/09715010.2019.1677180
- Theoretical Approach for the Fast Estimation of the Turbulent Kinematic Viscosity for Internal Flows, Journal of Nuclear Engineering and Radiation Science, Volume 8 (2022) no. 3 | DOI:10.1115/1.4054342
- Online-coupling of widely-ranged timescales to model coral reef development, Environmental Modelling Software, Volume 143 (2021), p. 105103 | DOI:10.1016/j.envsoft.2021.105103
- Analytical Eddy Viscosity Model for Velocity Profiles in the Outer Part of Closed- and Open-Channel Flows, Fluid Dynamics, Volume 56 (2021) no. 4, p. 577 | DOI:10.1134/s0015462821040017
- Reinvestigating the Parabolic-Shaped Eddy Viscosity Profile for Free Surface Flows, Hydrology, Volume 8 (2021) no. 3, p. 126 | DOI:10.3390/hydrology8030126
- Turbulent kinetic energy estimate in the near wall region of smooth turbulent channel flows, Meccanica, Volume 56 (2021) no. 10, p. 2533 | DOI:10.1007/s11012-021-01396-2
- Effects of the hinge position and suction on flow separation and aerodynamic performance of the NACA 0012 airfoil, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 42 (2020) no. 2 | DOI:10.1007/s40430-020-2170-4
- Eddy Viscosity and Velocity Profiles in Fully-Developed Turbulent Channel Flows, Fluid Dynamics, Volume 54 (2019) no. 1, p. 137 | DOI:10.1134/s0015462819010014
- Roughness effects on near-wall turbulence modelling for open-channel flows By M. Qi, J. Li, Q. Chen and Q. Zhang, Journal of Hydraulic Research, Volume 57 (2019) no. 5, p. 744 | DOI:10.1080/00221686.2019.1627593
- Near-Wall Models for Improved Heat Transfer Predictions in Channel Flow Applications, Journal of Thermophysics and Heat Transfer, Volume 29 (2015) no. 4, p. 732 | DOI:10.2514/1.t4386
- THEORY OF NEAR SURFACE TURBULENCE APPLIED TO WIND SPEED PROFILES, DRY DEPOSITION, AIR–WATER EXCHANGE, AND CANOPY EFFECTS, Air Dispersion Modeling (2013), p. 607 | DOI:10.1002/9781118723098.app3
- Numerical investigation toward improving heat-transfer predictions in a turbulent channel flow, International Journal of Thermal Sciences, Volume 70 (2013), p. 10 | DOI:10.1016/j.ijthermalsci.2011.06.018
- Numerical Simulations of Heat Transfer in Plane Channel Flow, Defect and Diffusion Forum, Volume 312-315 (2011), p. 671 | DOI:10.4028/www.scientific.net/ddf.312-315.671
- An improved near-wall treatment for turbulent channel flows, International Journal of Computational Fluid Dynamics, Volume 25 (2011) no. 1, p. 41 | DOI:10.1080/10618562.2011.554832
Cité par 20 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier