[Approximation semi-décentralisée d'un contrôle optimal pour des equations aux dérivées partielles dans un domaine borné]
Nous présentons une méthode de calcul de contrôle optimal pour des systèmes distribués linéaires. Sa construction repose sur le calcul fonctionnel des opérateurs auto-adjoints et sur la formule de représentation de Dunford–Schwartz. Elle est conçue pour des architectures de calcul à très fine granularité avec coordination semi-décentralisée. Enfin, elle est illustrée par un exemple portant sur la stabilisation des vibrations dans une matrice de micro-cantilevers.
We present a computational method for the optimal control of linear distributed systems. Its derivation is based on the functional calculus of self-adjoint operators, and on the Dunford–Schwartz representation formula. It has been devised to be implementable on very fine grained computing processors with semi-decentralized coordination. Finally, it is illustrated by an example related to vibration stabilization of a micro-cantilever array.
Accepté le :
Publié le :
Mots-clés : Instabilité, Contrôle optimal distribué, Contrôle décentralisé, Modèle multiéchelle, Matrice de micro-cantilevers
Michel Lenczner 1 ; Youssef Yakoubi 2
@article{CRMECA_2009__337_4_245_0, author = {Michel Lenczner and Youssef Yakoubi}, title = {Semi-decentralized approximation of optimal control for partial differential equations in bounded domains}, journal = {Comptes Rendus. M\'ecanique}, pages = {245--250}, publisher = {Elsevier}, volume = {337}, number = {4}, year = {2009}, doi = {10.1016/j.crme.2009.03.013}, language = {en}, }
TY - JOUR AU - Michel Lenczner AU - Youssef Yakoubi TI - Semi-decentralized approximation of optimal control for partial differential equations in bounded domains JO - Comptes Rendus. Mécanique PY - 2009 SP - 245 EP - 250 VL - 337 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2009.03.013 LA - en ID - CRMECA_2009__337_4_245_0 ER -
%0 Journal Article %A Michel Lenczner %A Youssef Yakoubi %T Semi-decentralized approximation of optimal control for partial differential equations in bounded domains %J Comptes Rendus. Mécanique %D 2009 %P 245-250 %V 337 %N 4 %I Elsevier %R 10.1016/j.crme.2009.03.013 %G en %F CRMECA_2009__337_4_245_0
Michel Lenczner; Youssef Yakoubi. Semi-decentralized approximation of optimal control for partial differential equations in bounded domains. Comptes Rendus. Mécanique, Volume 337 (2009) no. 4, pp. 245-250. doi : 10.1016/j.crme.2009.03.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.013/
[1] An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, vol. 1, Springer-Verlag, New York, 1995
[2] Functional Analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995 Reprint of the sixth (1980) edition
[3] A multiscale model for atomic force microscope array mechanical behavior, Appl. Phys. Lett., Volume 90 (2007), p. 091908
[4] Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3, Springer-Verlag, Berlin, 1990
- Semi-decentralized approximation of optimal control of distributed systems based on a functional calculus, Optimal Control Applications Methods, Volume 36 (2015) no. 4, pp. 422-446 | DOI:10.1002/oca.2115 | Zbl:1329.49054
- , 2012 Second Workshop on Design, Control and Software Implementation for Distributed MEMS (2012), p. 46 | DOI:10.1109/dmems.2012.15
- Diffusive realizations for solutions of some operator equations: the one-dimensional case, Mathematics of Computation, Volume 81 (2012) no. 277, pp. 319-344 | DOI:10.1090/s0025-5718-2011-02485-3 | Zbl:1238.47012
- , 2011 12th Intl. Conf. on Thermal, Mechanical Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (2011), p. 1/6 | DOI:10.1109/esime.2011.5765783
- Semi-decentralized approximation of a LQR-based controller for a one-dimensional cantilever array, IFAC Proceedings Volumes, Volume 44 (2011) no. 1, p. 1422 | DOI:10.3182/20110828-6-it-1002.03451
- , 2010 11th International Thermal, Mechanical Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE) (2010), p. 1 | DOI:10.1109/esime.2010.5464558
- , 2010 First Workshop on Hardware and Software Implementation and Control of Distributed MEMS (2010), p. 56 | DOI:10.1109/dmems.2010.16
Cité par 7 documents. Sources : Crossref, zbMATH
Commentaires - Politique