[Production numérique d'entropie et indicateur d'erreur pour les écoulements compressibles]
Dans le cadre des écoulements multifluides, on cherche à raffiner le maillage de manière à optimiser la précision. Comme critère de raffinement, nous proposons d'utiliser la production numérique d'entropie. Dans un prototype de raffinement par bitree, on vérifie que ce critère est pertinent. L'objectif est de valider la procédure avant de l'intégrer dans un code tridimensionnel parallèle.
In the case of multifluid flows, it is classical to refine the mesh in order to improve the precision. As mesh refinement criterion, we propose to use the numerical entropy production. In a refinement procedure by bitree, we check the relevance of this criterion. Our objective is to validate the mesh refinement before integrating it into a three-dimensional parallel code.
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides numérique, Production d'entropie, Schéma de Godunov, Volumes finis, Raffinement de maillage, Indicateur d'erreur
Frédéric Golay 1, 2
@article{CRMECA_2009__337_4_233_0, author = {Fr\'ed\'eric Golay}, title = {Numerical entropy production and error indicator for compressible flows}, journal = {Comptes Rendus. M\'ecanique}, pages = {233--237}, publisher = {Elsevier}, volume = {337}, number = {4}, year = {2009}, doi = {10.1016/j.crme.2009.04.004}, language = {en}, }
Frédéric Golay. Numerical entropy production and error indicator for compressible flows. Comptes Rendus. Mécanique, Volume 337 (2009) no. 4, pp. 233-237. doi : 10.1016/j.crme.2009.04.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.04.004/
[1] Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities, SIAM J. Numer. Anal., Volume 46 (2008) no. 6, pp. 3032-3070
[2] A quadtree adaptive level set method for capturing interfacial instability on Cartesian grid, Eng. App. Comp. Fluid Mech., Volume 1–4 (2007), pp. 263-372
[3] Spatially adaptive techniques for level set methods and incompressible flow, Comput. Fluids, Volume 35 (2006), pp. 995-1010
[4] Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comp. Phys., Volume 190 (2003), pp. 572-600
[5] Numerical simulation of wave breaking, M2AN, Volume 39 (2005) no. 3, pp. 591-607
[6] Numerical schemes for low Mach wave breaking, Int. J. Comput. Fluid Dyn., Volume 21 (2007) no. 2, pp. 69-86
[7] A posteriori error estimation for finite-volume solutions of hyperbolic conservation laws, Comp. Meth. App. Eng., Volume 185 (2000), pp. 1-19
[8] J.P. Croisille, Contribution à l'étude théorique et à l'approximation par elements finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multi-espèce, Thèse de l'université Paris VI, 1990
[9] Numerical entropy production on shocks and smooth transitions, SIAM J. Sci. Comput., Volume 17 (2002) no. 1–4, pp. 263-271
[10] Numerical entropy production for central schemes, SIAM J. Sci. Comput., Volume 25 (2003) no. 4, pp. 1382-1415
[11] Practical computation of axisymmetrical multifluid flows, Int. J. Finite, Volume 1 (2003), pp. 1-34
[12] Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, New York, 1999
- Entropy and Adjoint Methods, Journal of Scientific Computing, Volume 81 (2019) no. 3, p. 2447 | DOI:10.1007/s10915-019-01092-0
- NUMERICAL ENTROPY PRODUCTION AS SMOOTHNESS INDICATOR FOR SHALLOW WATER EQUATIONS, The ANZIAM Journal, Volume 61 (2019) no. 4, p. 398 | DOI:10.1017/s1446181119000154
- Entropy Production by Explicit Runge–Kutta Schemes, Journal of Scientific Computing, Volume 76 (2018) no. 1, p. 521 | DOI:10.1007/s10915-017-0627-0
- Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids, Advances in Mathematical Physics, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/7528625
- A smoothness indicator for numerical solutions to the Ripa model, Journal of Physics: Conference Series, Volume 693 (2016), p. 012011 | DOI:10.1088/1742-6596/693/1/012011
- Block-based adaptive mesh refinement scheme using numerical density of entropy production for three-dimensional two-fluid flows, International Journal of Computational Fluid Dynamics, Volume 29 (2015) no. 1, p. 67 | DOI:10.1080/10618562.2015.1012161
- Entropy production and mesh refinement – application to wave breaking, Mechanics Industry, Volume 16 (2015) no. 3, p. 301 | DOI:10.1051/meca/2015003
- Adaptive multiscale scheme based on numerical density of entropy production for conservation laws, Open Mathematics, Volume 11 (2013) no. 8 | DOI:10.2478/s11533-013-0252-6
Cité par 8 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier