Comptes Rendus
A nodal boundary elements formulation. Application to the solution of the Laplace equation for irrotational flows
[Une procédure nodale de résolution numérique de l'équation de Laplace. Application aux écoulements à potentiel de vitesse]
Comptes Rendus. Mécanique, Volume 337 (2009) no. 4, pp. 208-217.

La Note présente une méthode non-conventionnelle de calcul de l'écoulement de fluide parfait incompressible autour de corps portants. D'abord l'équation de Laplace régissant le potentiel de la vitesse est résolue avec des conditions de Dirichlet internes exprimées aux nœuds du maillage plutôt que sur des parties lisses de la surface. La méthode est applicable moyennant l'utilisation de répartitions surfaciques continues de couches de doublets, avec lesquelles l'obtention du champ de vitesse pariétale devient trivial. Ensuite une formulation originale de type Neumann des conditions de Kutta est proposée. Exprimée sous forme d'une minimisation du flux pariétal de la vitesse, elle entraîne une réduction sensible de l'impact de la discrétisation sur l'estimation des efforts globaux par rapport aux formulations locales. La méthode est applicable aux écoulements bi ou tri-dimensionnels, stationnaires ou non.

The Note presents an unconventional computational method for irrotational and incompressible fluid flows over lifting bodies. At first, Laplace's equation for the velocity potential is solved with internal Dirichlet conditions expressed at the nodes of the mesh rather than at smooth surface positions. Continuous distributions of surface normal doublets are used, and obtaining the surface velocity field with such distributions becomes straightforward. Secondly, an original Neumann type formulation of the Kutta conditions is proposed. Expressing the minimization of the velocity flux across the wall shows a significant reduction of the discretization impact upon the computed global efforts when compared to local no-load conditions. The method can be applied to 2 or 3-dimensional flows, steady or not.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2009.05.004
Keywords: Fluid mechanics, Dirichlet, Doublets, Flow, Kutta, Laplace, Nodes, Potential
Mot clés : Mécanique des fluides, Dirichlet, Doublets, Écoulement, Kutta, Laplace, Nœuds, Potentiel

Pascal Ardonceau 1

1 Laboratoire d'études aérodynamiques, CNRS UMR 6609, ENSMA, BP 109, 86960 Futuroscope cedex, France
@article{CRMECA_2009__337_4_208_0,
     author = {Pascal Ardonceau},
     title = {A nodal boundary elements formulation. {Application} to the solution of the {Laplace} equation for irrotational flows},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {208--217},
     publisher = {Elsevier},
     volume = {337},
     number = {4},
     year = {2009},
     doi = {10.1016/j.crme.2009.05.004},
     language = {en},
}
TY  - JOUR
AU  - Pascal Ardonceau
TI  - A nodal boundary elements formulation. Application to the solution of the Laplace equation for irrotational flows
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 208
EP  - 217
VL  - 337
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2009.05.004
LA  - en
ID  - CRMECA_2009__337_4_208_0
ER  - 
%0 Journal Article
%A Pascal Ardonceau
%T A nodal boundary elements formulation. Application to the solution of the Laplace equation for irrotational flows
%J Comptes Rendus. Mécanique
%D 2009
%P 208-217
%V 337
%N 4
%I Elsevier
%R 10.1016/j.crme.2009.05.004
%G en
%F CRMECA_2009__337_4_208_0
Pascal Ardonceau. A nodal boundary elements formulation. Application to the solution of the Laplace equation for irrotational flows. Comptes Rendus. Mécanique, Volume 337 (2009) no. 4, pp. 208-217. doi : 10.1016/j.crme.2009.05.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.05.004/

[1] I. Kroo Drag due to lift: Concepts for prediction and reduction, Annual Review of Fluid Mechanics, Volume 33 (2001), pp. 587-617

[2] Boundary Element Methods in Acoustics (C.A. Brebbia; R.D. Ciskowski, eds.), Computational Mechanics Publications and Elsevier Applied Sciences, 1991

[3] M. Bonnet Boundary Integral Equation Methods for Solids and Fluids, Wiley, London, 1999

[4] J.L. Hess; A.M.O. Smith Calculation of potential flows about arbitrary bodies, Progress in Aeronautical Sciences, Volume 8 (1966), pp. 1-138

[5] J. Katz; A. Plotkin Low Speed Aerodynamics, McGraw-Hill, 1991

[6] F.T. Johnson, A general panel method for the analysis and design of arbitrary configurations in incompressible flows, NASA Report 3079, 1980

[7] B. Maskew, Prediction of subsonic aerodynamics characteristics: A case for low order panel methods, AIAA Paper 81-0252, 1981

[8] A.E. Magnus, M.A. Epton, PAN AIR-A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method, vol. 1, NASA CR-3251, 1980

[9] B. Hunt, The panel method for subsonic aerodynamic flows: A survey of mathematical formulations and numerical models and an outline of the new British aerospace scheme, Von Karman Institute for Fluid Dynamics, Lecture Series 1978-4, 1978

[10] I. Paraschivoiu Aérodynamique Subsonique, Editions de l'Ecole Polytechnique de Montréal, 1998

[11] M. Mudry, La théorie générale des nappes et filaments tourbillonnaires et ses applications à l'aérodynamique instationnaire, Thèse d'Etat, Paris VI, 1982

[12] L.M. Milne-Thomson Theoretical Hydrodynamics, MacMillan and Co, 1962 (pp. 186–191)

Cité par Sources :

Commentaires - Politique