[Impact de modifications géométriques dʼun swirler sur lʼécoulement aval et sur le noyau tourbillonaire en précession]
La géométrie du swirler influence fortement la dynamique de flamme dans les turbines à gaz. Alors que des formules empiriques peuvent être utilisées pour estimer le nombre de swirl et lʼécoulement aval correspondant, quantifier lʼimpact de petites modifications géométriques reste une tâche difficile. Ce problème est traité dans cet article en analysant la sensibilité de la dynamique de lʼécoulement moyen et des grandes structures instationnaires à de petits changements de la géométrie du swirler. Les écoulements en aval de deux swirlers radiaux, dont la géometrie diffère légèrement, sont comparés en utilisant des simulations aux grandes échelles et des expériences. Cette différence géométrique agit fortement sur les composantes de vitesse moyenne au voisinage du plan dʼinjection, et sur la structure de la zone de recirculation interne. Les effets sur le noyau tourbillonaire en précession sont ensuite étudiés à partir dʼune décomposition en modes dynamiques des résultats numériques.
Swirler design strongly influences combustion stabilization and flame dynamics in gas turbines. The rotating flow induced by the swirler is mainly determined by the swirl number. While empirical formulas may be used to estimate this quantity and deduce the corresponding flow features, a precise quantification of the impact of geometrical details is not available. This issue is investigated in this article by analyzing the sensitivity of the mean flow field and unsteady structures to small changes in the swirler design. Two radial swirlers, with slightly different geometries are compared by combining Large Eddy Simulations and experiments. The geometrical difference induces changes of the mean velocity components near the injection plane, which in turn modify the structure of the internal recirculation zone. Effects on the precessing vortex core are then revealed by applying a dynamic mode decomposition to the numerical results. It is found that the geometrical modification of the swirler notably affects the flow structure and PVC frequency.
Mot clés : Écoulements tournants, Géométrie du swirler, SGE, DMD, NTP
Jean-François Bourgouin 1, 2, 3 ; Jonas Moeck 1, 2 ; Daniel Durox 1, 2 ; Thierry Schuller 1, 2 ; Sébastien Candel 1, 2, 4
@article{CRMECA_2013__341_1-2_211_0, author = {Jean-Fran\c{c}ois Bourgouin and Jonas Moeck and Daniel Durox and Thierry Schuller and S\'ebastien Candel}, title = {Sensitivity of swirling flows to small changes in the swirler geometry}, journal = {Comptes Rendus. M\'ecanique}, pages = {211--219}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.10.018}, language = {en}, }
TY - JOUR AU - Jean-François Bourgouin AU - Jonas Moeck AU - Daniel Durox AU - Thierry Schuller AU - Sébastien Candel TI - Sensitivity of swirling flows to small changes in the swirler geometry JO - Comptes Rendus. Mécanique PY - 2013 SP - 211 EP - 219 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.10.018 LA - en ID - CRMECA_2013__341_1-2_211_0 ER -
%0 Journal Article %A Jean-François Bourgouin %A Jonas Moeck %A Daniel Durox %A Thierry Schuller %A Sébastien Candel %T Sensitivity of swirling flows to small changes in the swirler geometry %J Comptes Rendus. Mécanique %D 2013 %P 211-219 %V 341 %N 1-2 %I Elsevier %R 10.1016/j.crme.2012.10.018 %G en %F CRMECA_2013__341_1-2_211_0
Jean-François Bourgouin; Jonas Moeck; Daniel Durox; Thierry Schuller; Sébastien Candel. Sensitivity of swirling flows to small changes in the swirler geometry. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 211-219. doi : 10.1016/j.crme.2012.10.018. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.018/
[1] Vortex breakdown: A review, Progress in Energy and Combustion Science, Volume 27 (2001) no. 4, pp. 431-481
[2] Combustion dynamics and control: Progress and challenges, Proceedings of the Combustion Institute, Volume 29 (2002) no. 1, pp. 1-28
[3] Swirl Flows, Abaqus Press, 1984
[4] C. Hirsch, D. Fanaca, P. Reddy, W. Polifke, T. Sattelmayer, Influence of the swirler design on the flame transfer function of premixed flames, in: Proceedings of the ASME Turbo Expo 2005, vol. 2, 2005, pp. 151–160.
[5] A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems, Progress in Energy and Combustion Science, Volume 32 (2006) no. 2, pp. 93-161
[6] Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor, Combustion and Flame, Volume 157 (2010), pp. 2250-2266
[7] Nonlinear interaction between a precessing vortex core and acoustic oscillations in a turbulent swirling flame, Combustion and Flame, Volume 159 (2012) no. 8, pp. 2650-2668
[8] CFD simulation of precession in sudden pipe expansion flows with low inlet swirl, Applied Mathematical Modelling, Volume 26 (2002), pp. 1-15
[9] LES and experimental studies of cold and reacting flow in a swirled partially premixed burner with and without fuel modulation, Combustion and Flame, Volume 150 (2007) no. 1–2, pp. 40-53
[10] Large eddy simulation and experimental studies of a confined turbulent swirling flow, Physics of Fluids, Volume 16 (2004) no. 9, pp. 3306-3324
[11] Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations, Combustion and Flame, Volume 141 (2005) no. 1–2, pp. 40-54
[12] Dynamics and stability of lean-premixed swirl-stabilized combustion, Progress in Energy and Combustion Science, Volume 35 (2009) no. 4, pp. 293-364
[13] Spectral analysis of nonlinear flows, Journal of Fluid Mechanics, Volume 641 (2009), pp. 115-127
[14] Dynamics of premixed confined swirling flames, C. R. Mécanique, Volume 337 (2009) no. 6–7, pp. 395-405
[15] Flow seeding with an air nebulizer, Experiments in Fluids, Volume 27 (1999), pp. 408-413
[16] Development of high-order Taylor–Galerkin schemes for LES, Journal of Computational Physics, Volume 162 (2000) no. 2, pp. 338-371
[17] Boundary-conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, Volume 101 (1992) no. 1, pp. 104-129
[18] Applications of the dynamic mode decomposition, Theoretical and Computational Fluid Dynamics, Volume 25 (2010) no. 1–4, pp. 249-259
[19] Dynamic mode decomposition of numerical and experimental data, Journal of Fluid Mechanics, Volume 656 (2010), pp. 5-28
[20] Numerical simulations of isothermal flow in a swirl burner, Journal of Engineering for Gas Turbines and Power, Volume 129 (2007), pp. 377-386
[21] Swirl flow structure and flame characteristics in a model lean premixed combustor, Combustion Science and Technology, Volume 175 (2007) no. 8, pp. 1369-1388
Cité par Sources :
Commentaires - Politique