[Impact de modifications géométriques dʼun swirler sur lʼécoulement aval et sur le noyau tourbillonaire en précession]
La géométrie du swirler influence fortement la dynamique de flamme dans les turbines à gaz. Alors que des formules empiriques peuvent être utilisées pour estimer le nombre de swirl et lʼécoulement aval correspondant, quantifier lʼimpact de petites modifications géométriques reste une tâche difficile. Ce problème est traité dans cet article en analysant la sensibilité de la dynamique de lʼécoulement moyen et des grandes structures instationnaires à de petits changements de la géométrie du swirler. Les écoulements en aval de deux swirlers radiaux, dont la géometrie diffère légèrement, sont comparés en utilisant des simulations aux grandes échelles et des expériences. Cette différence géométrique agit fortement sur les composantes de vitesse moyenne au voisinage du plan dʼinjection, et sur la structure de la zone de recirculation interne. Les effets sur le noyau tourbillonaire en précession sont ensuite étudiés à partir dʼune décomposition en modes dynamiques des résultats numériques.
Swirler design strongly influences combustion stabilization and flame dynamics in gas turbines. The rotating flow induced by the swirler is mainly determined by the swirl number. While empirical formulas may be used to estimate this quantity and deduce the corresponding flow features, a precise quantification of the impact of geometrical details is not available. This issue is investigated in this article by analyzing the sensitivity of the mean flow field and unsteady structures to small changes in the swirler design. Two radial swirlers, with slightly different geometries are compared by combining Large Eddy Simulations and experiments. The geometrical difference induces changes of the mean velocity components near the injection plane, which in turn modify the structure of the internal recirculation zone. Effects on the precessing vortex core are then revealed by applying a dynamic mode decomposition to the numerical results. It is found that the geometrical modification of the swirler notably affects the flow structure and PVC frequency.
Mots-clés : Écoulements tournants, Géométrie du swirler, SGE, DMD, NTP
Jean-François Bourgouin 1, 2, 3 ; Jonas Moeck 1, 2 ; Daniel Durox 1, 2 ; Thierry Schuller 1, 2 ; Sébastien Candel 1, 2, 4
@article{CRMECA_2013__341_1-2_211_0, author = {Jean-Fran\c{c}ois Bourgouin and Jonas Moeck and Daniel Durox and Thierry Schuller and S\'ebastien Candel}, title = {Sensitivity of swirling flows to small changes in the swirler geometry}, journal = {Comptes Rendus. M\'ecanique}, pages = {211--219}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.10.018}, language = {en}, }
TY - JOUR AU - Jean-François Bourgouin AU - Jonas Moeck AU - Daniel Durox AU - Thierry Schuller AU - Sébastien Candel TI - Sensitivity of swirling flows to small changes in the swirler geometry JO - Comptes Rendus. Mécanique PY - 2013 SP - 211 EP - 219 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.10.018 LA - en ID - CRMECA_2013__341_1-2_211_0 ER -
%0 Journal Article %A Jean-François Bourgouin %A Jonas Moeck %A Daniel Durox %A Thierry Schuller %A Sébastien Candel %T Sensitivity of swirling flows to small changes in the swirler geometry %J Comptes Rendus. Mécanique %D 2013 %P 211-219 %V 341 %N 1-2 %I Elsevier %R 10.1016/j.crme.2012.10.018 %G en %F CRMECA_2013__341_1-2_211_0
Jean-François Bourgouin; Jonas Moeck; Daniel Durox; Thierry Schuller; Sébastien Candel. Sensitivity of swirling flows to small changes in the swirler geometry. Comptes Rendus. Mécanique, Combustion, spray and flow dynamics for aerospace propulsion, Volume 341 (2013) no. 1-2, pp. 211-219. doi : 10.1016/j.crme.2012.10.018. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.018/
[1] Vortex breakdown: A review, Progress in Energy and Combustion Science, Volume 27 (2001) no. 4, pp. 431-481
[2] Combustion dynamics and control: Progress and challenges, Proceedings of the Combustion Institute, Volume 29 (2002) no. 1, pp. 1-28
[3] Swirl Flows, Abaqus Press, 1984
[4] C. Hirsch, D. Fanaca, P. Reddy, W. Polifke, T. Sattelmayer, Influence of the swirler design on the flame transfer function of premixed flames, in: Proceedings of the ASME Turbo Expo 2005, vol. 2, 2005, pp. 151–160.
[5] A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems, Progress in Energy and Combustion Science, Volume 32 (2006) no. 2, pp. 93-161
[6] Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor, Combustion and Flame, Volume 157 (2010), pp. 2250-2266
[7] Nonlinear interaction between a precessing vortex core and acoustic oscillations in a turbulent swirling flame, Combustion and Flame, Volume 159 (2012) no. 8, pp. 2650-2668
[8] CFD simulation of precession in sudden pipe expansion flows with low inlet swirl, Applied Mathematical Modelling, Volume 26 (2002), pp. 1-15
[9] LES and experimental studies of cold and reacting flow in a swirled partially premixed burner with and without fuel modulation, Combustion and Flame, Volume 150 (2007) no. 1–2, pp. 40-53
[10] Large eddy simulation and experimental studies of a confined turbulent swirling flow, Physics of Fluids, Volume 16 (2004) no. 9, pp. 3306-3324
[11] Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations, Combustion and Flame, Volume 141 (2005) no. 1–2, pp. 40-54
[12] Dynamics and stability of lean-premixed swirl-stabilized combustion, Progress in Energy and Combustion Science, Volume 35 (2009) no. 4, pp. 293-364
[13] Spectral analysis of nonlinear flows, Journal of Fluid Mechanics, Volume 641 (2009), pp. 115-127
[14] Dynamics of premixed confined swirling flames, C. R. Mécanique, Volume 337 (2009) no. 6–7, pp. 395-405
[15] Flow seeding with an air nebulizer, Experiments in Fluids, Volume 27 (1999), pp. 408-413
[16] Development of high-order Taylor–Galerkin schemes for LES, Journal of Computational Physics, Volume 162 (2000) no. 2, pp. 338-371
[17] Boundary-conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, Volume 101 (1992) no. 1, pp. 104-129
[18] Applications of the dynamic mode decomposition, Theoretical and Computational Fluid Dynamics, Volume 25 (2010) no. 1–4, pp. 249-259
[19] Dynamic mode decomposition of numerical and experimental data, Journal of Fluid Mechanics, Volume 656 (2010), pp. 5-28
[20] Numerical simulations of isothermal flow in a swirl burner, Journal of Engineering for Gas Turbines and Power, Volume 129 (2007), pp. 377-386
[21] Swirl flow structure and flame characteristics in a model lean premixed combustor, Combustion Science and Technology, Volume 175 (2007) no. 8, pp. 1369-1388
- The effect of diverging angle on flame dynamics of near lean blowout in a centrally staged spray combustor, Physics of Fluids, Volume 36 (2024) no. 7 | DOI:10.1063/5.0204019
- Scaling of Flame Describing Functions in Premixed Swirling Flames, Flow, Turbulence and Combustion, Volume 111 (2023) no. 3, p. 929 | DOI:10.1007/s10494-023-00458-7
- Numerical CFD Simulation of a Horizontal Cyclonic Combustion Chamber for Burning Pulverized Biomass Solid Fuels, Waste and Biomass Valorization, Volume 14 (2023) no. 6, p. 1979 | DOI:10.1007/s12649-022-01972-x
- Analysis of the sound sources of lean premixed methane–air flames, GAMM-Mitteilungen, Volume 45 (2022) no. 1 | DOI:10.1002/gamm.202200001
- Investigation of flame structure and precessing vortex core instability of a gas turbine model combustor with different swirler configurations, Physics of Fluids, Volume 34 (2022) no. 8 | DOI:10.1063/5.0097430
- The suitability of different swirl number definitions for describing swirl flows: Accurate, common and (over-) simplified formulations, Progress in Energy and Combustion Science, Volume 89 (2022), p. 100969 | DOI:10.1016/j.pecs.2021.100969
- LES of a turbulent swirl flame using a mesh adaptive level-set method with dynamic load balancing, Computers Fluids, Volume 221 (2021), p. 104900 | DOI:10.1016/j.compfluid.2021.104900
- Review of Wood Biomass Cyclone Burner, Energies, Volume 14 (2021) no. 16, p. 4807 | DOI:10.3390/en14164807
- Chemical and physical effects on lean blowout in a swirl-stabilized single-cup combustor, Proceedings of the Combustion Institute, Volume 38 (2021) no. 4, p. 6309 | DOI:10.1016/j.proci.2020.06.119
- , AIAA Scitech 2020 Forum (2020) | DOI:10.2514/6.2020-1883
- Combustion Dynamics in a Single-Element Lean Direct Injection Gas Turbine Combustor, Combustion Science and Technology, Volume 192 (2020) no. 12, p. 2371 | DOI:10.1080/00102202.2019.1646732
- Combustion Dynamics of Annular Systems, Combustion Science and Technology, Volume 192 (2020) no. 7, p. 1358 | DOI:10.1080/00102202.2020.1734583
- Optimized Design of a Swirler for a Combustion Chamber of Non-Premixed Flame Using Genetic Algorithms, Energies, Volume 13 (2020) no. 9, p. 2240 | DOI:10.3390/en13092240
- Noise sources of an unconfined and a confined swirl burner, Journal of Sound and Vibration, Volume 475 (2020), p. 115293 | DOI:10.1016/j.jsv.2020.115293
- Experimental study of the influence of the swirl number on lean premixed combustion regimes, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 42 (2020) no. 4 | DOI:10.1007/s40430-020-02274-w
- The combustor, Stabilization and Dynamic of Premixed Swirling Flames (2020), p. 1 | DOI:10.1016/b978-0-12-819996-1.00009-3
- References, Stabilization and Dynamic of Premixed Swirling Flames (2020), p. 345 | DOI:10.1016/b978-0-12-819996-1.00017-2
- Parametric investigation of combustion instabilities in a single-element lean direct injection combustor, International Journal of Spray and Combustion Dynamics, Volume 11 (2019) | DOI:10.1177/1756827718785851
- , Progress in Propulsion Physics – Volume 11 (2019), p. 407 | DOI:10.1051/eucass/201911407
- Towards lower gas turbine emissions: Flameless distributed combustion, Renewable and Sustainable Energy Reviews, Volume 67 (2017), p. 1237 | DOI:10.1016/j.rser.2016.09.032
- , 52nd AIAA/SAE/ASEE Joint Propulsion Conference (2016) | DOI:10.2514/6.2016-4724
- Optimization of stepped conical swirler with multiple jets for pre-mixed turbulent swirl flames, Applied Thermal Engineering, Volume 102 (2016), p. 359 | DOI:10.1016/j.applthermaleng.2016.03.149
- Experimental and numerical investigation of the influence of thermal boundary conditions on premixed swirling flame stabilization, Combustion and Flame, Volume 171 (2016), p. 42 | DOI:10.1016/j.combustflame.2016.05.006
- Effect of the Adjustable Inner Secondary Air-Flaring Angle of Swirl Burner on Coal-Opposed Combustion, Journal of Energy Engineering, Volume 142 (2016) no. 1 | DOI:10.1061/(asce)ey.1943-7897.0000279
- , 51st AIAA/SAE/ASEE Joint Propulsion Conference (2015) | DOI:10.2514/6.2015-4227
- Effect of boundary conditions on downstream vorticity from counter-rotating swirlers, Chinese Journal of Aeronautics, Volume 28 (2015) no. 1, p. 34 | DOI:10.1016/j.cja.2014.12.014
- Effect of azimuthal flow fluctuations on flow and flame dynamics of axisymmetric swirling flames, Physics of Fluids, Volume 27 (2015) no. 10 | DOI:10.1063/1.4933135
- , 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (2014) | DOI:10.2514/6.2014-3433
- , 52nd Aerospace Sciences Meeting (2014) | DOI:10.2514/6.2014-0654
- , World Congress on Sustainable Technologies (WCST-2014) (2014), p. 48 | DOI:10.1109/wcst.2014.7030095
Cité par 30 documents. Sources : Crossref
Commentaires - Politique