[Transfert de chaleur couplé par simulations aux grandes échelles dans les turbines à gaz]
Le transfert de chaleur couplé est une contrainte forte de la conception des TAG (turbines à gaz). La plupart des outils existant répondent à des problèmes chainés et stationnaires. Un environnement parallèle pour traiter des problèmes thermiques couplés a été développé et appliqué à deux configurations types de la conception des TAG. Un code de simulation aux grandes échelles et un code de conduction thermique échangent des données via un superviseur. Une interaction flamme/paroi permet d'évaluer la précision et l'ordre des solutions couplées. L'état thermique stationnaire d'une aube de turbine refroidie est ensuite étudié. Le couplage thermique diminue les températures adiabatiques de paroi de la pale et reproduit l'efficacité de refroidissement expérimentale.
CHT (Conjugate Heat Transfer) is a main design constraint for GT (gas turbines). Most existing CHT tools are developed for chained, steady phenomena. A fully parallel environment for CHT has been developed and applied to two configurations of interest for the design of GT. A reactive Large Eddy Simulations code and a solid conduction solver exchange data via a supervisor. A flame/wall interaction is used to assess the precision and the order of the coupled solutions. A film-cooled turbine vane is then studied. Thermal conduction in the blade implies lower wall temperature than adiabatic results and CHT reproduces the experimental cooling efficiency.
Mot clés : Combustion, Transfert de chaleur couplé, Simulation aux grandes échelles, Interaction flamme paroi, Aube de turbine
Florent Duchaine 1 ; Simon Mendez 1 ; Franck Nicoud 2 ; Alban Corpron 3 ; Vincent Moureau 3 ; Thierry Poinsot 4
@article{CRMECA_2009__337_6-7_550_0, author = {Florent Duchaine and Simon Mendez and Franck Nicoud and Alban Corpron and Vincent Moureau and Thierry Poinsot}, title = {Conjugate heat transfer with {Large} {Eddy} {Simulation} for gas turbine components}, journal = {Comptes Rendus. M\'ecanique}, pages = {550--561}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.005}, language = {en}, }
TY - JOUR AU - Florent Duchaine AU - Simon Mendez AU - Franck Nicoud AU - Alban Corpron AU - Vincent Moureau AU - Thierry Poinsot TI - Conjugate heat transfer with Large Eddy Simulation for gas turbine components JO - Comptes Rendus. Mécanique PY - 2009 SP - 550 EP - 561 VL - 337 IS - 6-7 PB - Elsevier DO - 10.1016/j.crme.2009.06.005 LA - en ID - CRMECA_2009__337_6-7_550_0 ER -
%0 Journal Article %A Florent Duchaine %A Simon Mendez %A Franck Nicoud %A Alban Corpron %A Vincent Moureau %A Thierry Poinsot %T Conjugate heat transfer with Large Eddy Simulation for gas turbine components %J Comptes Rendus. Mécanique %D 2009 %P 550-561 %V 337 %N 6-7 %I Elsevier %R 10.1016/j.crme.2009.06.005 %G en %F CRMECA_2009__337_6-7_550_0
Florent Duchaine; Simon Mendez; Franck Nicoud; Alban Corpron; Vincent Moureau; Thierry Poinsot. Conjugate heat transfer with Large Eddy Simulation for gas turbine components. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 550-561. doi : 10.1016/j.crme.2009.06.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.005/
[1] Gas Turbines Combustion, Taylor & Francis, 1999
[2] R.S. Bunker, Gas turbine heat transfer: 10 remaining hot gas path challenges, in: Proceedings of GT2006, ASME Turbo Expo 2006, 2006
[3] Gas turbine heat transfer: Past and future challenges, J. Propul. Power, Volume 16 ( July 2000 ) no. 4, pp. 583-589
[4] Heat transfer research on gas turbine airfoils at NASA GRC, Int. J. Heat Fluid Flow, Volume 23 ( April 2002 ) no. 2, pp. 109-136
[5] E. Mercier, L. Tesse, N. Savary, 3D full predictive thermal chain for gas turbine, in: 25th International Congress of the Aeronautical Sciences, Hamburg, Germany, September 2006
[6] Steady unsteady flows simulations using the hybrid flow solver AVBP, AIAA J., Volume 37 (1999) no. 11, pp. 1378-1385
[7] Large-eddy simulation experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high pressure burner, J. Fluid Mech., Volume 570 (2007), pp. 17-46
[8] Development of high-order Taylor–Galerkin schemes for unsteady calculations, J. Comput. Phys., Volume 162 (2000) no. 2, pp. 338-371
[9] High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids, J. Comput. Phys., Volume 202 (2005) no. 2, pp. 710-736
[10] Theoretical and Numerical Combustion, R.T. Edwards, 2005
[11] S. Buis, A. Piacentini, D. Déclat, PALM: A Computational Framework for Assembling High Performance Computing Applications, Concurrency and Computation: Practice and Experience, 2005
[12] Stability analysis of numerical interface conditions in fluid-structure thermal analysis, Int. J. Numer. Methods Fluids, Volume 25 (1997) no. 4, pp. 421-436
[13] S. Chemin, Étude des interactions thermiques fluides-structure par un couplage de codes de calcul, Ph.D. thesis, Université de Reims Champagne-Ardenne, 2006
[14] Flame/wall interaction maximum heat wall fluxes in diffusion burners, Proc. Combust. Inst., Volume 29 (2002), pp. 775-780
[15] Interaction of H2 + O2 flames with inert walls, Combust. Flame, Volume 135 (2003) no. 1–2, pp. 123-133
[16] Unsteady heat transfer during side wall quenching of a laminar flame, 23rd Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1990, pp. 441-446
[17] Increased surface temperature effects on wall heat transfer during unsteady flame quenching, 24th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1992, pp. 1465-1472
[18] Interaction of a premixed flame with a liquid fuel film on a wall, Proc. Combust. Inst., Volume 30 (2005), pp. 259-267
[19] A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects (T.J. Poinsot; T. Baritaud; M. Baum, eds.), Rapport du Centre de Recherche sur la Combustion Turbulente, Technip, Rueil Malmaison, 1996, pp. 81-123
[20] An analysis of wall heat fluxes, reaction mechanisms and unburnt hydrocarbons during the head-on quenching of a laminar methane flame, Combust. Flame, Volume 108 (1997) no. 3, pp. 327-348
[21] Gas turbine film cooling, J. Propul. Power, Volume 22 (2006) no. 2, pp. 249-270
[22] M.-L. Holmer, L.-E. Eriksson, B. Sunden, Heat transfer on a film cooled inlet guide vane, in: Proceedings of the ASME Heat Transfer Division, vol. 366-3, 2000, pp. 43–50
[23] Toward improved film cooling prediction, J. Turbomach., Volume 124 (2002), pp. 193-199
[24] F. Nicoud, T. Poinsot, DNS of a channel flow with variable properties, in: Int. Symp. on Turbulence and Shear Flow Phenomena, Santa Barbara, Sept 12–15, 1999
Cité par Sources :
Commentaires - Politique