Comptes Rendus
Conjugate heat transfer with Large Eddy Simulation for gas turbine components
Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 550-561.

CHT (Conjugate Heat Transfer) is a main design constraint for GT (gas turbines). Most existing CHT tools are developed for chained, steady phenomena. A fully parallel environment for CHT has been developed and applied to two configurations of interest for the design of GT. A reactive Large Eddy Simulations code and a solid conduction solver exchange data via a supervisor. A flame/wall interaction is used to assess the precision and the order of the coupled solutions. A film-cooled turbine vane is then studied. Thermal conduction in the blade implies lower wall temperature than adiabatic results and CHT reproduces the experimental cooling efficiency.

Le transfert de chaleur couplé est une contrainte forte de la conception des TAG (turbines à gaz). La plupart des outils existant répondent à des problèmes chainés et stationnaires. Un environnement parallèle pour traiter des problèmes thermiques couplés a été développé et appliqué à deux configurations types de la conception des TAG. Un code de simulation aux grandes échelles et un code de conduction thermique échangent des données via un superviseur. Une interaction flamme/paroi permet d'évaluer la précision et l'ordre des solutions couplées. L'état thermique stationnaire d'une aube de turbine refroidie est ensuite étudié. Le couplage thermique diminue les températures adiabatiques de paroi de la pale et reproduit l'efficacité de refroidissement expérimentale.

Published online:
DOI: 10.1016/j.crme.2009.06.005
Keywords: Combustion, Conjugate heat transfer, Large Eddy Simulation, Wall flame interaction, Turbine blade
Mot clés : Combustion, Transfert de chaleur couplé, Simulation aux grandes échelles, Interaction flamme paroi, Aube de turbine

Florent Duchaine 1; Simon Mendez 1; Franck Nicoud 2; Alban Corpron 3; Vincent Moureau 3; Thierry Poinsot 4

1 CERFACS, CFD team, 42, avenue Coriolis, 31057 Toulouse cedex 01, France
2 Applied Mathematics, University Montpellier II, France
3 Turbomeca (Safran Group), Bordes, France
4 CNRS Institut de mécanique des fluides, Toulouse, France
@article{CRMECA_2009__337_6-7_550_0,
     author = {Florent Duchaine and Simon Mendez and Franck Nicoud and Alban Corpron and Vincent Moureau and Thierry Poinsot},
     title = {Conjugate heat transfer with {Large} {Eddy} {Simulation} for gas turbine components},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {550--561},
     publisher = {Elsevier},
     volume = {337},
     number = {6-7},
     year = {2009},
     doi = {10.1016/j.crme.2009.06.005},
     language = {en},
}
TY  - JOUR
AU  - Florent Duchaine
AU  - Simon Mendez
AU  - Franck Nicoud
AU  - Alban Corpron
AU  - Vincent Moureau
AU  - Thierry Poinsot
TI  - Conjugate heat transfer with Large Eddy Simulation for gas turbine components
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 550
EP  - 561
VL  - 337
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crme.2009.06.005
LA  - en
ID  - CRMECA_2009__337_6-7_550_0
ER  - 
%0 Journal Article
%A Florent Duchaine
%A Simon Mendez
%A Franck Nicoud
%A Alban Corpron
%A Vincent Moureau
%A Thierry Poinsot
%T Conjugate heat transfer with Large Eddy Simulation for gas turbine components
%J Comptes Rendus. Mécanique
%D 2009
%P 550-561
%V 337
%N 6-7
%I Elsevier
%R 10.1016/j.crme.2009.06.005
%G en
%F CRMECA_2009__337_6-7_550_0
Florent Duchaine; Simon Mendez; Franck Nicoud; Alban Corpron; Vincent Moureau; Thierry Poinsot. Conjugate heat transfer with Large Eddy Simulation for gas turbine components. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 550-561. doi : 10.1016/j.crme.2009.06.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.005/

[1] A.H. Lefebvre Gas Turbines Combustion, Taylor & Francis, 1999

[2] R.S. Bunker, Gas turbine heat transfer: 10 remaining hot gas path challenges, in: Proceedings of GT2006, ASME Turbo Expo 2006, 2006

[3] R. Schiele; S. Wittig Gas turbine heat transfer: Past and future challenges, J. Propul. Power, Volume 16 ( July 2000 ) no. 4, pp. 583-589

[4] V.K. Garg Heat transfer research on gas turbine airfoils at NASA GRC, Int. J. Heat Fluid Flow, Volume 23 ( April 2002 ) no. 2, pp. 109-136

[5] E. Mercier, L. Tesse, N. Savary, 3D full predictive thermal chain for gas turbine, in: 25th International Congress of the Aeronautical Sciences, Hamburg, Germany, September 2006

[6] T. Schönfeld; M. Rudgyard Steady unsteady flows simulations using the hybrid flow solver AVBP, AIAA J., Volume 37 (1999) no. 11, pp. 1378-1385

[7] P. Schmitt; T.J. Poinsot; B. Schuermans; K. Geigle Large-eddy simulation experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high pressure burner, J. Fluid Mech., Volume 570 (2007), pp. 17-46

[8] O. Colin; M. Rudgyard Development of high-order Taylor–Galerkin schemes for unsteady calculations, J. Comput. Phys., Volume 162 (2000) no. 2, pp. 338-371

[9] V. Moureau; G. Lartigue; Y. Sommerer; C. Angelberger; O. Colin; T. Poinsot High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids, J. Comput. Phys., Volume 202 (2005) no. 2, pp. 710-736

[10] T. Poinsot; D. Veynante Theoretical and Numerical Combustion, R.T. Edwards, 2005

[11] S. Buis, A. Piacentini, D. Déclat, PALM: A Computational Framework for Assembling High Performance Computing Applications, Concurrency and Computation: Practice and Experience, 2005

[12] M.B. Giles Stability analysis of numerical interface conditions in fluid-structure thermal analysis, Int. J. Numer. Methods Fluids, Volume 25 (1997) no. 4, pp. 421-436

[13] S. Chemin, Étude des interactions thermiques fluides-structure par un couplage de codes de calcul, Ph.D. thesis, Université de Reims Champagne-Ardenne, 2006

[14] A. Delataillade; F. Dabireau; B. Cuenot; T. Poinsot Flame/wall interaction maximum heat wall fluxes in diffusion burners, Proc. Combust. Inst., Volume 29 (2002), pp. 775-780

[15] F. Dabireau; B. Cuenot; O. Vermorel; T. Poinsot Interaction of H2 + O2 flames with inert walls, Combust. Flame, Volume 135 (2003) no. 1–2, pp. 123-133

[16] J.H. Lu; O. Ezekoye; R. Greif; F. Sawyer Unsteady heat transfer during side wall quenching of a laminar flame, 23rd Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1990, pp. 441-446

[17] O.A. Ezekoye; R. Greif; D. Lee Increased surface temperature effects on wall heat transfer during unsteady flame quenching, 24th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1992, pp. 1465-1472

[18] G. Desoutter; B. Cuenot; C. Habchi; T. Poinsot Interaction of a premixed flame with a liquid fuel film on a wall, Proc. Combust. Inst., Volume 30 (2005), pp. 259-267

[19] P. Popp; M. Baum; M. Hilka; T. Poinsot A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects (T.J. Poinsot; T. Baritaud; M. Baum, eds.), Rapport du Centre de Recherche sur la Combustion Turbulente, Technip, Rueil Malmaison, 1996, pp. 81-123

[20] P. Popp; M. Baum An analysis of wall heat fluxes, reaction mechanisms and unburnt hydrocarbons during the head-on quenching of a laminar methane flame, Combust. Flame, Volume 108 (1997) no. 3, pp. 327-348

[21] D.G. Bogard; K.A. Thole Gas turbine film cooling, J. Propul. Power, Volume 22 (2006) no. 2, pp. 249-270

[22] M.-L. Holmer, L.-E. Eriksson, B. Sunden, Heat transfer on a film cooled inlet guide vane, in: Proceedings of the ASME Heat Transfer Division, vol. 366-3, 2000, pp. 43–50

[23] G. Medic; P.A. Durbin Toward improved film cooling prediction, J. Turbomach., Volume 124 (2002), pp. 193-199

[24] F. Nicoud, T. Poinsot, DNS of a channel flow with variable properties, in: Int. Symp. on Turbulence and Shear Flow Phenomena, Santa Barbara, Sept 12–15, 1999

Cited by Sources:

Comments - Policy