[Stabilisation des flammes non prémélangées dans les écoulements supersoniques réactifs]
Une approche Lagrangienne est introduite pour décrire les flammes turbulentes non prémélangées dans des jets co-courants supersoniques. L'objectif final est de disposer d'un modèle numérique robuste pour la simulation de la torche sous-détendue GH2/GO2 utilisée comme système d'allumage dans un moteur fusée. L'approche retenue repose sur les travaux de Borghi et de ses collaborateurs. Elle permet de décrire les effets de chimie finie et sa récente extension aux écoulements à grandes vitesses permet de prendre en compte l'influence des phénomènes liés à la dissipation visqueuse. En effet, les termes sources chimiques étant fortement sensibles à la température, l'influence des phénomènes visqueux sur l'emballement thermique devient d'autant plus importante que le nombre de Mach est grand. La validation du modèle étendu a été récemment effectuée en considérant deux cas expérimentaux de référence. Cette étape préliminaire de validation est brièvement résumée mais le but essentiel de la présente étude est de procéder maintenant à la simulation numérique de configurations regroupant les particularités de la torche sous-détendue GH2/GO2. Le comportement des flammes jet supersoniques correspondant aux différentes conditions est discuté à la lumière des résultats des simulations numériques.
A Lagrangian framework is set out to describe turbulent non-premixed combustion in high speed coflowing jet flows. The final aim is to provide a robust computational methodology to simulate, in various conditions, the underexpanded GH2/GO2 torch jet that is used to initiate combustion in an expander cycle engine. The proposed approach relies on an early modelling proposal of Borghi and his coworkers. The model is well suited to describe finite rate chemistry effects and its recent extension to high speed flows allows one to take the influence of viscous dissipation phenomena into account. Indeed, since the chemical source terms are highly temperature sensitive, the influence of viscous phenomena on the thermal runaway is likely to be all the more pronounced since the Mach number values are high. The validation of the extended model has been recently performed through the numerical simulation of two distinct well-documented experimental databases. Only a brief summary of this preliminary validation step is provided here. The main purpose of the present work is to proceed with the numerical simulation of geometries that bring together the essential peculiarities of the underexpanded GH2/GO2 torch. The behavior of the corresponding supersonic coflowing jet flames for various conditions is discussed in the light of computational results.
Mots-clés : Combustion, Modèle Lagrangien, Combustion supersonique, Effets visqueux, Jets sous-détendus
Jean-Francois Izard 1 ; Arnaud Mura 1
@article{CRMECA_2009__337_6-7_362_0, author = {Jean-Francois Izard and Arnaud Mura}, title = {Stabilization of non-premixed flames in supersonic reactive flows}, journal = {Comptes Rendus. M\'ecanique}, pages = {362--372}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.006}, language = {en}, }
Jean-Francois Izard; Arnaud Mura. Stabilization of non-premixed flames in supersonic reactive flows. Comptes Rendus. Mécanique, Combustion for aerospace propulsion, Volume 337 (2009) no. 6-7, pp. 362-372. doi : 10.1016/j.crme.2009.06.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.006/
[1] V. Morgenthaler, L.F. Figueira da Silva, B. Deshaies, V.A. Sabel'nikov, Non-premixed combustion in supersonic turbulent flows: a numerical study for co-flowing H2–air jets, AIAA Paper 99-4917, 1999
[2] U. Wepler, W.W. Koschel, Numerical investigation of turbulent reacting flows in a scramjet combustor model, AIAA paper 2002-3572, 2002
[3] Revisited flamelet model for non premixed combustion in supersonic turbulent flows, Combustion and Flame, Volume 114 (1998), pp. 577-584
[4] A Lagrangian model for predicting turbulent diffusion flames with chemical kinetic effects, Proceedings of the Combustion Institute, Volume 25 (1994), pp. 1107-1113
[5] Numerical Recipes in Fortran 90. The Art of Parallel Scientific Computing, Cambridge University Press, 1999
[6] J. Villermaux, J.C. Devillon, Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d'interaction phénoménologique, in: Proceedings of the 2nd International Symposium on Chemical Reaction Engineering, Amsterdam, vol. B, Elsevier, 1972, pp. 1–13
[7] Lagrangian intermittent modeling of turbulent lifted flames, Combustion Theory and Modelling, Volume 11 (2007) no. 2, pp. 227-257
[8] Towards an extended scalar dissipation equation for turbulent premixed combustion, Combustion and Flame, Volume 133 (2003), pp. 193-196
[9] Modelling of the correlation between velocity and reactive scalar gradients in turbulent flames based on DNS data, Combustion Theory and Modelling, Volume 12 (2008) no. 4, pp. 671-698
[10] C.J. Jachimowski, An analytical study of the hydrogen–air reaction mechanism with application to scramjet combustion, NASA Technical Paper 2791, 1988
[11] J.F. Izard, G. Lehnasch, A. Mura, A Lagrangian model of combustion in high speed flows: application to scramjet conditions, Combustion Science and Technology, submitted for publication
[12] Combustion-induced pressure effects in supersonic diffusion flames, Proceedings of the Combustion Institute, Volume 27 (1998), pp. 2165-2171
[13] J.F. Izard, A. Mura, A Lagrangian model for non-premixed combustion in supersonic turbulent flows, in: Proceedings of the 18th International Shock Interaction Symposium, Rouen (France), 15–18 July 2008, pp. 207–212
[14] Dilatation dissipation: the concept and application in modeling compressible mixing layers, Physics of Fluids, Volume 2 (1990) no. 2, pp. 176-188
[15] R. Martin, Projet N3SNatur, Version 1.4, Manuel Théorique, Simulog FRANCE, 2001
[16] Anisotropic mesh adaptation technique for viscous flow simulation, East–West Journal of Numerical Mathematics, Volume 9 (2001) no. 1, pp. 1-24
[17] A robust methodology for RANS simulations of highly underexpanded jets, International Journal for Numerical Methods in Fluids, Volume 56 (2008) no. 12, pp. 2179-2205
[18] Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen–air diffusion flame, Combustion and Flame, Volume 99 (1994), pp. 157-173
[19] Assumed turbulence-chemistry closure with temperature–composition correlation, Combustion and Flame, Volume 134 (2003), pp. 131-148
[20] Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion, Combustion and Flame, Volume 132 (2003) no. 1–2, pp. 3-24
[21] The structure and utilization of supersonic free jets in low density wind tunnel, Advances in Applied Mathematics – Rarefied Gas Dynamics, Academic, New York, 1966, pp. 84-105
- Research progress of the flow and combustion organization for the high-Mach-number scramjet: From Mach 8 to 12, Progress in Aerospace Sciences (2025), p. 101094 | DOI:10.1016/j.paerosci.2025.101094
- Flame Diagnostics with a Conservative Representation of Chemical Explosive Mode Analysis, AIAA Journal, Volume 57 (2019) no. 4, p. 1355 | DOI:10.2514/1.j057994
- Analysis of flame stabilization mechanism in a hydrogen-fueled reacting wall-jet flame, International Journal of Hydrogen Energy, Volume 44 (2019) no. 48, p. 26609 | DOI:10.1016/j.ijhydene.2019.08.073
- Large-Eddy Simulation of Supersonic Hydrogen/Oxygen Combustion: Application to a Rocketlike Igniter, Journal of Propulsion and Power, Volume 34 (2018) no. 2, p. 291 | DOI:10.2514/1.b36542
- Highly resolved numerical simulation of combustion downstream of a rocket engine igniter, Shock Waves, Volume 27 (2017) no. 4, p. 655 | DOI:10.1007/s00193-017-0715-y
- Analysis of small-scale scalar mixing processes in highly under-expanded jets, Shock Waves, Volume 26 (2016) no. 2, p. 193 | DOI:10.1007/s00193-015-0599-7
- Explicit Chemical Timescale as a Substitute for Tabulated Chemistry in a H2–O2Turbulent Flame Simulation, Combustion Science and Technology, Volume 187 (2015) no. 5, p. 739 | DOI:10.1080/00102202.2014.962134
- A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers, Computers Fluids, Volume 89 (2014), p. 88 | DOI:10.1016/j.compfluid.2013.10.014
- Simulation of a supersonic hydrogen–air autoignition-stabilized flame using reduced chemistry, Combustion and Flame, Volume 159 (2012) no. 4, p. 1779 | DOI:10.1016/j.combustflame.2011.12.012
Cité par 9 documents. Sources : Crossref
Commentaires - Politique