Comptes Rendus
Comparison of numerical methods and combustion models for LES of a ramjet
Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 352-361.

Ramjets are very sensitive to instabilities and their numerical predictions can only be addressed adequately by Large Eddy Simulation (LES). With this technique, solvers can be implicit or explicit and handle structured, unstructured or hybrid meshes, etc. Turbulence and combustion models are other sources of differences. The impact of these options is here investigated for the ONERA ramjet burner. To do so, two LES codes developed by ONERA and CERFACS compute one stable operating condition. Preliminary LES results of the two codes underline the overall robustness of LES. Mean flow features at the various critical sections are reasonably well predicted by both codes. Disagreement mainly appear in the chamber where combustion positions differ pointing to the importance of the combustion and subgrid mixing models. The two LES produce different energy containing motions. With CEDRE, a low frequency dominates while AVBP produces different ranges of low frequencies that can be linked with acoustic modes of the configuration.

L'impact des méthodes numériques ainsi que du modèle de combustion sur la simulation aux grandes échelles d'un statofusée étudié expérimentalement par l'ONERA est analysé. Pour ce faire, deux codes développés respectivement par l'ONERA et le CERFACS sont utilisés pour calculer un point de fonctionnement stable. Les caractéristiques moyennes sont raisonnablement bien prédites par les deux codes. Les désaccords apparaissent dans la chambre de combustion où la position des zones réactives diffèrent soulignant l'importance des modèles utilisés. Les deux SGE produisent des contenus énergétiques fréquentiels différents. Avec CEDRE, une basse fréquence domine le spectre tandis qu'AVBP montre toute une gamme de basses fréquences qui peut être liée aux modes acoustiques de la configuration.

Published online:
DOI: 10.1016/j.crme.2009.06.008
Keywords: Computational fluid mechanics, Ramjet, Acoustic, Combustion, Numerical methods
Mot clés : Mécanique des fluides numérique, Statofusée, Acoustique, Combustion, Méthodes numériques

A. Roux 1; S. Reichstadt 2; N. Bertier 2; L. Gicquel 1; F. Vuillot 2; T. Poinsot 3

1 CERFACS, 52, avenue G. Coriolis, 31057 Toulouse cedex, France
2 ONERA, BP 72, 29, avenue de la Division Leclerc, 92322 Châtillon cedex, France
3 IMFT, avenue C. Soula, 31400 Toulouse, France
@article{CRMECA_2009__337_6-7_352_0,
     author = {A. Roux and S. Reichstadt and N. Bertier and L. Gicquel and F. Vuillot and T. Poinsot},
     title = {Comparison of numerical methods and combustion models for {LES} of a ramjet},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {352--361},
     publisher = {Elsevier},
     volume = {337},
     number = {6-7},
     year = {2009},
     doi = {10.1016/j.crme.2009.06.008},
     language = {en},
}
TY  - JOUR
AU  - A. Roux
AU  - S. Reichstadt
AU  - N. Bertier
AU  - L. Gicquel
AU  - F. Vuillot
AU  - T. Poinsot
TI  - Comparison of numerical methods and combustion models for LES of a ramjet
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 352
EP  - 361
VL  - 337
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crme.2009.06.008
LA  - en
ID  - CRMECA_2009__337_6-7_352_0
ER  - 
%0 Journal Article
%A A. Roux
%A S. Reichstadt
%A N. Bertier
%A L. Gicquel
%A F. Vuillot
%A T. Poinsot
%T Comparison of numerical methods and combustion models for LES of a ramjet
%J Comptes Rendus. Mécanique
%D 2009
%P 352-361
%V 337
%N 6-7
%I Elsevier
%R 10.1016/j.crme.2009.06.008
%G en
%F CRMECA_2009__337_6-7_352_0
A. Roux; S. Reichstadt; N. Bertier; L. Gicquel; F. Vuillot; T. Poinsot. Comparison of numerical methods and combustion models for LES of a ramjet. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 352-361. doi : 10.1016/j.crme.2009.06.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.008/

[1] T. Poinsot; D. Veynante Theoretical and Numerical Combustion, R.T. Edwards, 2005

[2] H. Pitsch Large eddy simulation of turbulent combustion, Ann. Rev. Fluid Mech., Volume 38 (2006), pp. 453-482

[3] P. Sagaut Large Eddy Simulation for Incompressible Flows, Scientific Computation Series, Springer-Verlag, 2000

[4] M. Boileau; G. Staffelbach; B. Cuenot; T. Poinsot; C. Bérat LES of an ignition sequence in a gas turbine engine, Combust. Flame, Volume 154 (2008) no. 1–2, pp. 2-22

[5] B. Sjöblom, Full-scale liquid fuel ramjet combustor tests, in: IXth ISABE, vol. 7027, 1989, pp. 273–281

[6] J.-M. Samaniego; B. Yip; T. Poinsot; S. Candel Low-frequency combustion instability mechanism in a side-dump combustor, Combust. Flame, Volume 94 (1993) no. 4, pp. 363-381

[7] D.E. Rogers; F.E. Marble A mechanism for high frequency oscillations in ramjet combustors and afterburners, Jet Propul., Volume 26 (1956), pp. 456-462

[8] L.Y.M. Gicquel, Y. Sommerer, B. Cuenot, T. Poinsot, LES and acoustic analysis of turbulent reacting flows: Application to a 3D oscillatory ramjet combustor, in: ASME, Paper AIAA-2006-151, RENO, USA, 2006

[9] S. Reichstadt, N. Bertier, A. Ristori, P. Bruel, Towards LES of mixing processes inside a research ramjet combustor, in: ISABE, 2007, p. 1188

[10] A. Roux; L.Y.M. Gicquel; Y. Sommerer; T. Poinsot Large eddy simulation of mean and oscillating flow in side-dump ramjet combustor, Combust. Flame, Volume 152 (2008) no. 1–2, pp. 154-176

[11] G. Heid, A. Ristori, Local fuel concentration measurements in a research dual ramjet combustion chamber by gas sampling analysis with carbon dioxide injection at the head end of the combustor, in: XVIIth Symposium ISABE, Munich, Germany, 2005

[12] A. Ristori, G. Heid, A. Cochet, G. Lavergne, Experimental and numerical study of turbulent flow inside a dual inlet research ducted rocket combustor, in: XIVth Symposium ISABE, Florence, Italy, 1999

[13] A. Ristori, G. Heid, C. Brossard, S. Reichstadt, Detailed characterization of the reacting one-phase and two-phase flow inside a research ramjet combustor, in: XVIIth Symposium ISABE, Munich, Germany, 2005

[14] J. Smagorinsky General circulation experiments with the primitive equations. i. The basic experiment, Mon. Weather Rev., Volume 91 (1963) no. 3, pp. 99-165

[15] M. Germano Turbulence: the filtering approach, J. Fluid Mech., Volume 238 (1992), pp. 325-336

[16] N. Lamarque, Schémas numériques et conditions limites pour la simulation aux grandes échelles de la combustion diphasique dans les foyers d'hélicoptères, Ph.D. thesis, INP Toulouse, 2007

[17] J.-Ph. Légier, T. Poinsot, D. Veynante, Dynamically thickened flame large eddy simulation model for premixed and non-premixed turbulent combustion, in: Summer Program 2000, Center for Turbulence Research, Stanford, USA, 2000, pp. 157–168

[18] O. Colin; F. Ducros; D. Veynante; T. Poinsot A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids, Volume 12 (2000) no. 7, pp. 1843-1863

[19] P. Schmitt; T.J. Poinsot; B. Schuermans; K. Geigle Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high pressure burner, J. Fluid Mech., Volume 570 (2007), pp. 17-46

[20] N. Peters; B. Rogg Reduced Kinetic Mechanisms for Applications in Combustion Systems, Lecture Notes in Physics, Springer-Verlag, Heidelberg, 1993

[21] C. Westbrook; F. Dryer Simplified reaction mechanism for the oxidation of hydrocarbon fuels in flames, Combust. Sci. Technol., Volume 27 (1981), pp. 31-43

[22] A. Murrone, D. Scherrer, Large-eddy simulation of a turbulent premixed flame stabilized by a backward facing step, in: 1st INCA Workshop, Villaroche, France, 2005

Cited by Sources:

Comments - Policy