Comptes Rendus
Destabilization of flapping sheets: The surprising analogue of soap films
Comptes Rendus. Mécanique, Combustion for aerospace propulsion, Volume 337 (2009) no. 6-7, pp. 469-480.

When punctured, a uniform liquid sheet is known, since Taylor and Culick, to recess at a constant speed, balancing surface tension and inertia. For planar soap films, this steady solution holds until the initially smooth receding rim is violently destabilized, exhibiting deep indentations from which droplets are ejected. A surprising new three-dimensional mechanism explaining this destabilization and resulting wavelength has been demonstrated: because of the shear between the still outer medium and the receding liquid, the film flaps through a Kelvin–Helmholtz instability, itself inducing an acceleration perpendicular to the film, which intensifies with the flapping amplitude. To this acceleration is associated a classical Rayleigh–Taylor mechanism, promoting the rim indentations.

Publié le :
DOI : 10.1016/j.crme.2009.06.007
Mots-clés : Liquid films, Shear instability, Flapping, Rayleigh–Taylor instability, Atomization, Drops

H. Lhuissier 1 ; E. Villermaux 1, 2

1 Aix-Marseille Université, IRPHE, 13384 Marseille cedex 13, France
2 Institut Universitaire de France
@article{CRMECA_2009__337_6-7_469_0,
     author = {H. Lhuissier and E. Villermaux},
     title = {Destabilization of flapping sheets: {The} surprising analogue of soap films},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {469--480},
     publisher = {Elsevier},
     volume = {337},
     number = {6-7},
     year = {2009},
     doi = {10.1016/j.crme.2009.06.007},
     language = {en},
}
TY  - JOUR
AU  - H. Lhuissier
AU  - E. Villermaux
TI  - Destabilization of flapping sheets: The surprising analogue of soap films
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 469
EP  - 480
VL  - 337
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crme.2009.06.007
LA  - en
ID  - CRMECA_2009__337_6-7_469_0
ER  - 
%0 Journal Article
%A H. Lhuissier
%A E. Villermaux
%T Destabilization of flapping sheets: The surprising analogue of soap films
%J Comptes Rendus. Mécanique
%D 2009
%P 469-480
%V 337
%N 6-7
%I Elsevier
%R 10.1016/j.crme.2009.06.007
%G en
%F CRMECA_2009__337_6-7_469_0
H. Lhuissier; E. Villermaux. Destabilization of flapping sheets: The surprising analogue of soap films. Comptes Rendus. Mécanique, Combustion for aerospace propulsion, Volume 337 (2009) no. 6-7, pp. 469-480. doi : 10.1016/j.crme.2009.06.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.007/

[1] N. Bremond; E. Villermaux Atomization by jet impact, J. Fluid Mech., Volume 549 (2006), pp. 273-306

[2] F. Savart Mémoire sur le choc de deux veines liquides animées de mouvements directement opposés, Ann. Chim., Volume 55 (1833), pp. 257-310

[3] F. Savart Mémoire sur le choc d'une veine liquide lancée sur un plan circulaire, Ann. Chim., Volume 54 (1833), pp. 56-87

[4] F. Savart Suite du mémoire sur le choc d'une veine liquide lancée sur un plan circulaire, Ann. Chim., Volume 54 (1833), pp. 113-145

[5] G.I. Taylor The dynamics of thin sheets of fluid. ii. Waves on fluid sheets, Proc. R. Soc. London, Volume 253 (1959), pp. 296-312

[6] G.I. Taylor The dynamics of thin sheets of fluid. iii. Disintegration of fluid sheets, Proc. R. Soc. London, Volume 253 (1959), pp. 313-321

[7] J.C.P. Huang The break-up of axisymmetric liquid sheets, J. Fluid Mech., Volume 43 (1970), pp. 305-319

[8] E. Villermaux; C. Clanet Life of a flapping liquid sheet, J. Fluid Mech., Volume 462 (2002), pp. 341-363

[9] H.B. Squire Investigation of the stability of a moving liquid film, British J. Appl. Phys., Volume 4 (1953), pp. 167-169

[10] J.L. York; H.E. Stubbs; M.R. Tek The mechanism of disintegration of liquid sheets, Trans. ASME (1953), pp. 1279-1286

[11] W.W. Hagerty; J.F. Shea A study of the stability of plane fluid sheets, J. Appl. Mech., Volume 22 (1955), pp. 509-514

[12] G.I. Taylor Formation of thin flat sheets of water, Proc. R. Soc. London, Volume 259 (1960), pp. 1-17

[13] S.P. Lin Breakup of Liquid Sheets and Jets, Cambridge University Press, 2003

[14] N. Bremond; C. Clanet; E. Villermaux Atomization of undulated liquid sheets, J. Fluid Mech., Volume 585 (2007), pp. 421-456

[15] G.D. Crapper; N. Dombrowski; W.P. Jepson; G.A.D. Pyott A note on the growth of Kelvin–Helmholtz waves on thin liquid sheets, J. Fluid Mech., Volume 57 (1973), pp. 671-672

[16] W.E. Ranz Some experiments on the dynamics of liquid films, J. Appl. Phys., Volume 30 (1959), p. 1950

[17] W.R. McEntee; K.J. Mysels The bursting of soap films. i. An experimental study, J. Phys. Chem., Volume 73 (1969), pp. 3018-3028

[18] S. Frankel; K.J. Mysels The bursting of soap films. ii. Theoretical considerations, J. Phys. Chem., Volume 73 (1969), pp. 3028-3038

[19] E.H. Lucassen-Reynders; J. Lucassen Properties of capillary waves, Adv. Colloid Interface Sci., Volume 2 (1969), pp. 347-395

[20] F.E.C. Culick Comments on a ruptured soap film, J. Appl. Phys., Volume 31 (1960), p. 1128

[21] A. Dupré Théorie mécanique de la chaleur, Ann. Chim. Phys., Volume 11 (1868), p. 194

[22] L. Rayleigh Some applications of photography, Nature, Volume XLIV (1891), pp. 249-254

[23] C. Clanet; E. Villermaux Life of a smooth liquid sheet, J. Fluid Mech., Volume 462 (2002), pp. 307-340

[24] R. Fowler; E.A. Guggenheim Statistical Thermodynamics, Cambridge University Press, UK, 1952

[25] N.Y. Liang; C.K. Chan; H.J. Choi Dynamics of the formation of an aureole in the bursting of soap films, Phys. Rev. E, Volume 54 (1996) no. 4, p. R3117-R3120

[26] C. Isenberg The Science of Soap Films and Soap Bubbles, Dover, 1992

[27] J. Eggers; E. Villermaux Physics of liquid jets, Rep. Prog. Phys., Volume 71 (2008), p. 036601

[28] P. Marmottant; E. Villermaux; C. Clanet Transient surface tension of an expanding liquid sheet, J. Colloid Interface, Volume 230 (2000), pp. 29-40

[29] P.G. de Gennes Mechanics of soft interfaces, Faraday Discuss., Volume 104 (1996), pp. 1-8

  • Ziyue Wang; Liansheng Liu Effect of film characteristics on bursting behavior of a bubble in gas space, Chemical Engineering Science, Volume 307 (2025), p. 121355 | DOI:10.1016/j.ces.2025.121355
  • A. Bhavadharani; M. Vadivukkarasan Understanding the primary breakup characteristics of impingement of a liquid jet on an opposing gas jet, Physics of Fluids, Volume 37 (2025) no. 4 | DOI:10.1063/5.0256293
  • Jun Eshima; Luc Deike; Howard A. Stone Thin-film flow due to an asymmetric distribution of surface tension and applications to surfactant deposition, Journal of Fluid Mechanics, Volume 992 (2024), p. 37 (Id/No a2) | DOI:10.1017/jfm.2024.501 | Zbl:7904680
  • Muhammad Rizwanur Rahman; Li Shen; James P. Ewen; Benjamin Collard; D. M. Heyes; Daniele Dini; E. R. Smith Non-equilibrium molecular simulations of thin film rupture, The Journal of Chemical Physics, Volume 158 (2023) no. 15 | DOI:10.1063/5.0149974
  • David W. Martin; François Blanchette Film evolution of a spherical soap bubble, Journal of Engineering Mathematics, Volume 137 (2022), p. 28 (Id/No 1) | DOI:10.1007/s10665-022-10241-8 | Zbl:1507.76014
  • Marco De Corato; Daniele Tammaro; Pier Luca Maffettone; Norberto Fueyo Retraction of thin films coated by insoluble surfactants, Journal of Fluid Mechanics, Volume 942 (2022), p. 24 (Id/No a55) | DOI:10.1017/jfm.2022.412 | Zbl:1491.76007
  • Vatsal Sanjay; Uddalok Sen; Pallav Kant; Detlef Lohse Taylor-Culick retractions and the influence of the surroundings, Journal of Fluid Mechanics, Volume 948 (2022), p. 37 (Id/No a14) | DOI:10.1017/jfm.2022.671 | Zbl:1517.76012
  • Emmanuel Villermaux; Xiaofei Wang; Luc Deike; Yannis Yortsos Bubbles spray aerosols: Certitudes and mysteries, PNAS Nexus, Volume 1 (2022) no. 5 | DOI:10.1093/pnasnexus/pgac261
  • Hollis Williams A case study of optical methods for measuring thickness of liquid sheets, Results in Optics, Volume 8 (2022), p. 100266 | DOI:10.1016/j.rio.2022.100266
  • Robert J. Demyanovich On the impingement of free, thin sheets of liquids—A photographic study of the impingement zone, AIP Advances, Volume 11 (2021) no. 1 | DOI:10.1063/5.0040336
  • K. Dhivyaraja; M. Jegan; M. Vadivukkarasan On the Rayleigh-Taylor instability induced atomization, International Journal of Multiphase Flow, Volume 142 (2021), p. 103735 | DOI:10.1016/j.ijmultiphaseflow.2021.103735
  • Aafrein Begam Faazil; Ann Mary Eapen; Siddharth Kizhakkelan Sudhakaran, 2020 Advances in Science and Engineering Technology International Conferences (ASET) (2020), p. 1 | DOI:10.1109/aset48392.2020.9118304
  • Emmanuel Villermaux Fragmentation versus cohesion, Journal of Fluid Mechanics, Volume 898 (2020), p. 121 (Id/No p1) | DOI:10.1017/jfm.2020.366 | Zbl:1460.76810
  • M. Vadivukkarasan; K. Dhivyaraja; Mahesh V. Panchagnula Breakup morphology of expelled respiratory liquid: From the perspective of hydrodynamic instabilities, Physics of Fluids, Volume 32 (2020) no. 9 | DOI:10.1063/5.0022858
  • B. Néel; E. Villermaux The spontaneous puncture of thick liquid films, Journal of Fluid Mechanics, Volume 838 (2018), pp. 192-221 | DOI:10.1017/jfm.2017.877 | Zbl:1419.76056
  • Saikat Basu; Ali Yawar; Andres Concha; M M Bandi On angled bounce-off impact of a drop impinging on a flowing soap film, Fluid Dynamics Research, Volume 49 (2017) no. 6, p. 065509 | DOI:10.1088/1873-7005/aa9280
  • J. O. Marston; T. T. Truscott; N. B. Speirs; M. M. Mansoor; S. T. Thoroddsen Crown sealing and buckling instability during water entry of spheres, Journal of Fluid Mechanics, Volume 794 (2016), pp. 506-529 | DOI:10.1017/jfm.2016.165 | Zbl:1462.76024
  • E. Villermaux; C. Almarcha Node dynamics and cusps size distribution at the border of liquid sheets, Physical Review Fluids, Volume 1 (2016) no. 4 | DOI:10.1103/physrevfluids.1.041902
  • P. C. Petit; M. Le Merrer; A.-L. Biance Holes and cracks in rigid foam films, Journal of Fluid Mechanics, Volume 774 (2015) | DOI:10.1017/jfm.2015.278
  • Henri Lhuissier; Emmanuel Villermaux The destabilization of an initially thick liquid sheet edge, Physics of Fluids, Volume 23 (2011) no. 9, p. 4 (Id/No 091705) | DOI:10.1063/1.3644840 | Zbl:1308.76024
  • L.E. Patruno; P.A. Marchioro Ystad; J.M. Marchetti; C.A. Dorao; H.F. Svendsen; H.A. Jakobsen Liquid entrainment from a wetted wire exposed to a high gas flow rate in cross flow, Chemical Engineering Science, Volume 65 (2010) no. 24, p. 6397 | DOI:10.1016/j.ces.2010.09.023

Cité par 21 documents. Sources : Crossref, zbMATH

Commentaires - Politique