When punctured, a uniform liquid sheet is known, since Taylor and Culick, to recess at a constant speed, balancing surface tension and inertia. For planar soap films, this steady solution holds until the initially smooth receding rim is violently destabilized, exhibiting deep indentations from which droplets are ejected. A surprising new three-dimensional mechanism explaining this destabilization and resulting wavelength has been demonstrated: because of the shear between the still outer medium and the receding liquid, the film flaps through a Kelvin–Helmholtz instability, itself inducing an acceleration perpendicular to the film, which intensifies with the flapping amplitude. To this acceleration is associated a classical Rayleigh–Taylor mechanism, promoting the rim indentations.
H. Lhuissier 1 ; E. Villermaux 1, 2
@article{CRMECA_2009__337_6-7_469_0, author = {H. Lhuissier and E. Villermaux}, title = {Destabilization of flapping sheets: {The} surprising analogue of soap films}, journal = {Comptes Rendus. M\'ecanique}, pages = {469--480}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.007}, language = {en}, }
H. Lhuissier; E. Villermaux. Destabilization of flapping sheets: The surprising analogue of soap films. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 469-480. doi : 10.1016/j.crme.2009.06.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.007/
[1] Atomization by jet impact, J. Fluid Mech., Volume 549 (2006), pp. 273-306
[2] Mémoire sur le choc de deux veines liquides animées de mouvements directement opposés, Ann. Chim., Volume 55 (1833), pp. 257-310
[3] Mémoire sur le choc d'une veine liquide lancée sur un plan circulaire, Ann. Chim., Volume 54 (1833), pp. 56-87
[4] Suite du mémoire sur le choc d'une veine liquide lancée sur un plan circulaire, Ann. Chim., Volume 54 (1833), pp. 113-145
[5] The dynamics of thin sheets of fluid. ii. Waves on fluid sheets, Proc. R. Soc. London, Volume 253 (1959), pp. 296-312
[6] The dynamics of thin sheets of fluid. iii. Disintegration of fluid sheets, Proc. R. Soc. London, Volume 253 (1959), pp. 313-321
[7] The break-up of axisymmetric liquid sheets, J. Fluid Mech., Volume 43 (1970), pp. 305-319
[8] Life of a flapping liquid sheet, J. Fluid Mech., Volume 462 (2002), pp. 341-363
[9] Investigation of the stability of a moving liquid film, British J. Appl. Phys., Volume 4 (1953), pp. 167-169
[10] The mechanism of disintegration of liquid sheets, Trans. ASME (1953), pp. 1279-1286
[11] A study of the stability of plane fluid sheets, J. Appl. Mech., Volume 22 (1955), pp. 509-514
[12] Formation of thin flat sheets of water, Proc. R. Soc. London, Volume 259 (1960), pp. 1-17
[13] Breakup of Liquid Sheets and Jets, Cambridge University Press, 2003
[14] Atomization of undulated liquid sheets, J. Fluid Mech., Volume 585 (2007), pp. 421-456
[15] A note on the growth of Kelvin–Helmholtz waves on thin liquid sheets, J. Fluid Mech., Volume 57 (1973), pp. 671-672
[16] Some experiments on the dynamics of liquid films, J. Appl. Phys., Volume 30 (1959), p. 1950
[17] The bursting of soap films. i. An experimental study, J. Phys. Chem., Volume 73 (1969), pp. 3018-3028
[18] The bursting of soap films. ii. Theoretical considerations, J. Phys. Chem., Volume 73 (1969), pp. 3028-3038
[19] Properties of capillary waves, Adv. Colloid Interface Sci., Volume 2 (1969), pp. 347-395
[20] Comments on a ruptured soap film, J. Appl. Phys., Volume 31 (1960), p. 1128
[21] Théorie mécanique de la chaleur, Ann. Chim. Phys., Volume 11 (1868), p. 194
[22] Some applications of photography, Nature, Volume XLIV (1891), pp. 249-254
[23] Life of a smooth liquid sheet, J. Fluid Mech., Volume 462 (2002), pp. 307-340
[24] Statistical Thermodynamics, Cambridge University Press, UK, 1952
[25] Dynamics of the formation of an aureole in the bursting of soap films, Phys. Rev. E, Volume 54 (1996) no. 4, p. R3117-R3120
[26] The Science of Soap Films and Soap Bubbles, Dover, 1992
[27] Physics of liquid jets, Rep. Prog. Phys., Volume 71 (2008), p. 036601
[28] Transient surface tension of an expanding liquid sheet, J. Colloid Interface, Volume 230 (2000), pp. 29-40
[29] Mechanics of soft interfaces, Faraday Discuss., Volume 104 (1996), pp. 1-8
Cité par Sources :
Commentaires - Politique