When punctured, a uniform liquid sheet is known, since Taylor and Culick, to recess at a constant speed, balancing surface tension and inertia. For planar soap films, this steady solution holds until the initially smooth receding rim is violently destabilized, exhibiting deep indentations from which droplets are ejected. A surprising new three-dimensional mechanism explaining this destabilization and resulting wavelength has been demonstrated: because of the shear between the still outer medium and the receding liquid, the film flaps through a Kelvin–Helmholtz instability, itself inducing an acceleration perpendicular to the film, which intensifies with the flapping amplitude. To this acceleration is associated a classical Rayleigh–Taylor mechanism, promoting the rim indentations.
H. Lhuissier 1 ; E. Villermaux 1, 2
@article{CRMECA_2009__337_6-7_469_0, author = {H. Lhuissier and E. Villermaux}, title = {Destabilization of flapping sheets: {The} surprising analogue of soap films}, journal = {Comptes Rendus. M\'ecanique}, pages = {469--480}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.007}, language = {en}, }
H. Lhuissier; E. Villermaux. Destabilization of flapping sheets: The surprising analogue of soap films. Comptes Rendus. Mécanique, Combustion for aerospace propulsion, Volume 337 (2009) no. 6-7, pp. 469-480. doi : 10.1016/j.crme.2009.06.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.007/
[1] Atomization by jet impact, J. Fluid Mech., Volume 549 (2006), pp. 273-306
[2] Mémoire sur le choc de deux veines liquides animées de mouvements directement opposés, Ann. Chim., Volume 55 (1833), pp. 257-310
[3] Mémoire sur le choc d'une veine liquide lancée sur un plan circulaire, Ann. Chim., Volume 54 (1833), pp. 56-87
[4] Suite du mémoire sur le choc d'une veine liquide lancée sur un plan circulaire, Ann. Chim., Volume 54 (1833), pp. 113-145
[5] The dynamics of thin sheets of fluid. ii. Waves on fluid sheets, Proc. R. Soc. London, Volume 253 (1959), pp. 296-312
[6] The dynamics of thin sheets of fluid. iii. Disintegration of fluid sheets, Proc. R. Soc. London, Volume 253 (1959), pp. 313-321
[7] The break-up of axisymmetric liquid sheets, J. Fluid Mech., Volume 43 (1970), pp. 305-319
[8] Life of a flapping liquid sheet, J. Fluid Mech., Volume 462 (2002), pp. 341-363
[9] Investigation of the stability of a moving liquid film, British J. Appl. Phys., Volume 4 (1953), pp. 167-169
[10] The mechanism of disintegration of liquid sheets, Trans. ASME (1953), pp. 1279-1286
[11] A study of the stability of plane fluid sheets, J. Appl. Mech., Volume 22 (1955), pp. 509-514
[12] Formation of thin flat sheets of water, Proc. R. Soc. London, Volume 259 (1960), pp. 1-17
[13] Breakup of Liquid Sheets and Jets, Cambridge University Press, 2003
[14] Atomization of undulated liquid sheets, J. Fluid Mech., Volume 585 (2007), pp. 421-456
[15] A note on the growth of Kelvin–Helmholtz waves on thin liquid sheets, J. Fluid Mech., Volume 57 (1973), pp. 671-672
[16] Some experiments on the dynamics of liquid films, J. Appl. Phys., Volume 30 (1959), p. 1950
[17] The bursting of soap films. i. An experimental study, J. Phys. Chem., Volume 73 (1969), pp. 3018-3028
[18] The bursting of soap films. ii. Theoretical considerations, J. Phys. Chem., Volume 73 (1969), pp. 3028-3038
[19] Properties of capillary waves, Adv. Colloid Interface Sci., Volume 2 (1969), pp. 347-395
[20] Comments on a ruptured soap film, J. Appl. Phys., Volume 31 (1960), p. 1128
[21] Théorie mécanique de la chaleur, Ann. Chim. Phys., Volume 11 (1868), p. 194
[22] Some applications of photography, Nature, Volume XLIV (1891), pp. 249-254
[23] Life of a smooth liquid sheet, J. Fluid Mech., Volume 462 (2002), pp. 307-340
[24] Statistical Thermodynamics, Cambridge University Press, UK, 1952
[25] Dynamics of the formation of an aureole in the bursting of soap films, Phys. Rev. E, Volume 54 (1996) no. 4, p. R3117-R3120
[26] The Science of Soap Films and Soap Bubbles, Dover, 1992
[27] Physics of liquid jets, Rep. Prog. Phys., Volume 71 (2008), p. 036601
[28] Transient surface tension of an expanding liquid sheet, J. Colloid Interface, Volume 230 (2000), pp. 29-40
[29] Mechanics of soft interfaces, Faraday Discuss., Volume 104 (1996), pp. 1-8
- Effect of film characteristics on bursting behavior of a bubble in gas space, Chemical Engineering Science, Volume 307 (2025), p. 121355 | DOI:10.1016/j.ces.2025.121355
- Understanding the primary breakup characteristics of impingement of a liquid jet on an opposing gas jet, Physics of Fluids, Volume 37 (2025) no. 4 | DOI:10.1063/5.0256293
- Thin-film flow due to an asymmetric distribution of surface tension and applications to surfactant deposition, Journal of Fluid Mechanics, Volume 992 (2024), p. 37 (Id/No a2) | DOI:10.1017/jfm.2024.501 | Zbl:7904680
- Non-equilibrium molecular simulations of thin film rupture, The Journal of Chemical Physics, Volume 158 (2023) no. 15 | DOI:10.1063/5.0149974
- Film evolution of a spherical soap bubble, Journal of Engineering Mathematics, Volume 137 (2022), p. 28 (Id/No 1) | DOI:10.1007/s10665-022-10241-8 | Zbl:1507.76014
- Retraction of thin films coated by insoluble surfactants, Journal of Fluid Mechanics, Volume 942 (2022), p. 24 (Id/No a55) | DOI:10.1017/jfm.2022.412 | Zbl:1491.76007
- Taylor-Culick retractions and the influence of the surroundings, Journal of Fluid Mechanics, Volume 948 (2022), p. 37 (Id/No a14) | DOI:10.1017/jfm.2022.671 | Zbl:1517.76012
- Bubbles spray aerosols: Certitudes and mysteries, PNAS Nexus, Volume 1 (2022) no. 5 | DOI:10.1093/pnasnexus/pgac261
- A case study of optical methods for measuring thickness of liquid sheets, Results in Optics, Volume 8 (2022), p. 100266 | DOI:10.1016/j.rio.2022.100266
- On the impingement of free, thin sheets of liquids—A photographic study of the impingement zone, AIP Advances, Volume 11 (2021) no. 1 | DOI:10.1063/5.0040336
- On the Rayleigh-Taylor instability induced atomization, International Journal of Multiphase Flow, Volume 142 (2021), p. 103735 | DOI:10.1016/j.ijmultiphaseflow.2021.103735
- , 2020 Advances in Science and Engineering Technology International Conferences (ASET) (2020), p. 1 | DOI:10.1109/aset48392.2020.9118304
- Fragmentation versus cohesion, Journal of Fluid Mechanics, Volume 898 (2020), p. 121 (Id/No p1) | DOI:10.1017/jfm.2020.366 | Zbl:1460.76810
- Breakup morphology of expelled respiratory liquid: From the perspective of hydrodynamic instabilities, Physics of Fluids, Volume 32 (2020) no. 9 | DOI:10.1063/5.0022858
- The spontaneous puncture of thick liquid films, Journal of Fluid Mechanics, Volume 838 (2018), pp. 192-221 | DOI:10.1017/jfm.2017.877 | Zbl:1419.76056
- On angled bounce-off impact of a drop impinging on a flowing soap film, Fluid Dynamics Research, Volume 49 (2017) no. 6, p. 065509 | DOI:10.1088/1873-7005/aa9280
- Crown sealing and buckling instability during water entry of spheres, Journal of Fluid Mechanics, Volume 794 (2016), pp. 506-529 | DOI:10.1017/jfm.2016.165 | Zbl:1462.76024
- Node dynamics and cusps size distribution at the border of liquid sheets, Physical Review Fluids, Volume 1 (2016) no. 4 | DOI:10.1103/physrevfluids.1.041902
- Holes and cracks in rigid foam films, Journal of Fluid Mechanics, Volume 774 (2015) | DOI:10.1017/jfm.2015.278
- The destabilization of an initially thick liquid sheet edge, Physics of Fluids, Volume 23 (2011) no. 9, p. 4 (Id/No 091705) | DOI:10.1063/1.3644840 | Zbl:1308.76024
- Liquid entrainment from a wetted wire exposed to a high gas flow rate in cross flow, Chemical Engineering Science, Volume 65 (2010) no. 24, p. 6397 | DOI:10.1016/j.ces.2010.09.023
Cité par 21 documents. Sources : Crossref, zbMATH
Commentaires - Politique