[Instabilité de flapping dʼun jet liquide]
Nous étudions lʼinstabilité de flapping observée lors de lʼatomisation incomplète dʼun jet liquide par un cocourant gaz : le jet liquide non atomisé se déstabilise sur une échelle grande par rapport à son rayon, et se brise en fragments liquides. Nous caractérisons dans un premier temps cette instabilité en mesurant sa fréquence, sa symétrie, et la répartition spatiale du liquide quʼelle entraîne. La longueur du cône liquide est mesurée en fonction des vitesses gaz et liquide, et sʼavère significativement plus longue que celle prédite par Raynal (1997) pour une couche de mélange plane. La fréquence de lʼinstabilité est mesurée par une méthode spectrale, et sʼavère proche de celle observée pour lʼinstabilité de cisaillement, mais légèrement inférieure. Lʼinstabilité a une symétrie plane, et non hélicoïdale, et semble ainsi sʼapparenter au flapping dʼune nappe liquide atomisée par deux nappes parallèles gaz. Le plan de lʼinstabilité est par contre orienté de façon aléatoire. Nous proposons un scénario pour le mécanisme de cette instabilité, en nous basant sur lʼinstabilité des modes non axisymétriques de lʼinstabilité de cisaillement. Nous caractérisons ensuite les tailles de gouttes produites lorsque lʼinstabilité de flapping est présente, par visualisation et traitement dʼimage : les distributions de tailles de gouttes mesurées se rapprochent des distributions observées en atomisation plane pour des conditions de faible vitesse gaz (décroissance lente aux grandes tailles de gouttes). Le diamètre moyen des gouttes ne dépend que faiblement de la vitesse du jet liquide, et décroit en
We study the flapping instability observed when a liquid jet is incompletely atomized by a fast parallel gas stream: the remaining liquid jet is destabilized over a scale large compared with its radius, and breaks into liquid fragments. We characterize the symmetry of this instability and its frequency. The intact liquid length is measured as a function of gas and liquid velocity, and turns out to be longer than the one predicted by Raynal (1997) for a planar mixing layer. The frequency of the instability is measured with a spectral method, and is in agreement with the frequency observed for the planar shear instability, though slightly smaller. The planar, and not helical, symmetry of the instability makes it akin to a flapping instability, observed when a planar liquid sheet is atomized by two planar gas streams. We next measure drop sizes when the flapping instability is present, with a method based on image processing. Measured size distributions are in agreement with distributions observed in a mixing layer geometry for low gas velocities (long tail distribution). The mean drop diameter depends weakly on liquid velocity, and decreases as
Mots-clés : Instabilité, Formation de gouttes, Atomisation
Jean-Philippe Matas 1 ; Alain Cartellier 1
@article{CRMECA_2013__341_1-2_35_0, author = {Jean-Philippe Matas and Alain Cartellier}, title = {Flapping instability of a liquid jet}, journal = {Comptes Rendus. M\'ecanique}, pages = {35--43}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.10.006}, language = {en}, }
Jean-Philippe Matas; Alain Cartellier. Flapping instability of a liquid jet. Comptes Rendus. Mécanique, Combustion, spray and flow dynamics for aerospace propulsion, Volume 341 (2013) no. 1-2, pp. 35-43. doi : 10.1016/j.crme.2012.10.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.006/
[1] Liquid jet instability and atomization in a coaxial gas stream, Annu. Rev. Fluid Mech., Volume 32 (2000), pp. 275-308
[2] Physics of liquid jets, Rep. Prog. Phys., Volume 71 (2008), p. 036601
[3] Experimental and analytical study of the shear instability of a gas–liquid mixing layer, Phys. Fluids, Volume 23 (2011), p. 094112
[4] On spray formation, J. Fluid Mech., Volume 498 (2004), p. 73
[5] M. Hong, A. Cartellier, E.J. Hopfinger, Atomization and mixing in coaxial injection, in: Proc. 4th Int. Conf. on Launcher Technology, Liège, Belgium, 2002.
[6] L. Raynal, Instabilité et entraînement à lʼinterface dʼune couche de mélange liquide–gaz, PhD thesis, Université J. Fourier Grenoble I, France, 1997.
[7] The effects of sheet thickness on the oscillation of an air-blasted liquid sheet, Exp. Fluids, Volume 39 (2005), pp. 127-139
[8] F. Couderc, Développement dʼun code de calcul pour la simulation dʼécoulements de fluides non miscibles. Application à la désintégration assistée dʼun jet liquide par un courant gazeux, PhD thesis, ENSAE Toulouse, France, 2007.
[9] Breakup of Liquid Sheets and Jets, Cambridge University Press, 2003
[10] S. Marty, J.-P. Matas, A. Cartellier, Study of a liquid–gas mixing layer: Shear instability and size of produced drops, in: 3rd INCA Colloquium, Onera-Toulouse, 17–18 November 2011.
- Research progress of jet washing technology and its exploratory decoking application in delayed coking process, Reviews in Chemical Engineering, Volume 41 (2025) no. 1, p. 51 | DOI:10.1515/revce-2024-0030
- , SAE Technical Paper Series, Volume 1 (2025) | DOI:10.4271/2025-01-8458
- 中心分级燃烧室同轴射流雾化机理与特性的数值研究, Gas Turbine Experiment and Research, Volume 37 (2024) no. 3, p. 1 | DOI:10.3724/j.gter.20240023
- Experimental Investigation on Atomization of JP-10 Slurry Jets Containing Boron Nanoparticles, Journal of Propulsion and Power, Volume 40 (2024) no. 6, p. 916 | DOI:10.2514/1.b39417
- Impact of the gas atomizer nozzle configuration on metal powder production for additive manufacturing, Powder Technology, Volume 443 (2024), p. 119974 | DOI:10.1016/j.powtec.2024.119974
- Jet flapping and its effect on flame oscillations in the SPP1980 SpraySyn burner, Experimental Thermal and Fluid Science, Volume 142 (2023), p. 110826 | DOI:10.1016/j.expthermflusci.2022.110826
- Breakup of planar liquid sheets injected at high speed in a quiescent gas environment, Journal of Fluid Mechanics, Volume 975 (2023) | DOI:10.1017/jfm.2023.843
- Primary breakup of shear‐thickening suspension jet by an annular air jet, AIChE Journal, Volume 68 (2022) no. 4 | DOI:10.1002/aic.17579
- Preheated liquid jet breakup dynamics in a twin-fluid injector, Chemical Engineering Science, Volume 257 (2022), p. 117723 | DOI:10.1016/j.ces.2022.117723
- Spatial characterization of the flapping instability of a laminar liquid jet fragmented by a swirled gas co-flow, International Journal of Multiphase Flow, Volume 152 (2022), p. 104056 | DOI:10.1016/j.ijmultiphaseflow.2022.104056
- Near-field spray characterization of a high-viscosity alternative jet fuel blend C-3 using a flow blurring injector, Fuel, Volume 293 (2021), p. 120350 | DOI:10.1016/j.fuel.2021.120350
- Influence of nozzle geometry on primary and large-scale instabilities in coaxial injectors, Chemical Engineering Science, Volume 221 (2020), p. 115694 | DOI:10.1016/j.ces.2020.115694
- Insights on the morphology of air-assisted breakup of urea-water-solution sprays for varying surface tension, International Journal of Multiphase Flow, Volume 133 (2020), p. 103448 | DOI:10.1016/j.ijmultiphaseflow.2020.103448
- Liquid jet disintegration memory effect on downstream spray fluctuations in a coaxial twin-fluid injector, Physics of Fluids, Volume 32 (2020) no. 7 | DOI:10.1063/5.0009188
- Large scale instabilities in coaxial air-water jets with annular air swirl, Physics of Fluids, Volume 31 (2019) no. 12 | DOI:10.1063/1.5122273
- Proper orthogonal decomposition of primary breakup and spray in co-axial airblast atomizers, Physics of Fluids, Volume 31 (2019) no. 4 | DOI:10.1063/1.5085416
- Liquid jet breakup unsteadiness in a coaxial air-blast atomizer, International Journal of Spray and Combustion Dynamics, Volume 10 (2018) no. 3, p. 211 | DOI:10.1177/1756827718760905
- Flapping instability of a liquid jet, Physical Review Fluids, Volume 3 (2018) no. 4 | DOI:10.1103/physrevfluids.3.043901
- Improving the processability of coke water slurries for entrained flow gasification, Fuel, Volume 185 (2016), p. 102 | DOI:10.1016/j.fuel.2016.07.102
- Comparative measurement of the breakup length of liquid jets in airblast atomisers using optical connectivity, electrical connectivity and shadowgraphy, Measurement, Volume 89 (2016), p. 288 | DOI:10.1016/j.measurement.2016.03.062
- Far-field properties of aerated water jets in air, International Journal of Multiphase Flow, Volume 76 (2015), p. 158 | DOI:10.1016/j.ijmultiphaseflow.2015.07.006
Cité par 21 documents. Sources : Crossref
Commentaires - Politique