[Mesures simultanées de richesse et de structure de flamme en sortie d'injecteur multipoint par PLIF]
Des mesures PLIF-kérosène et PLIF-OH ont été réalisées en sortie d'injecteur multipoint pour différentes conditions de richesse, avec une température d'air entre 480 et 730 K, à des pressions jusqu'à 2.2 MPa. Des images instantanées des distributions spatiales de kérosène et du radical OH ont été enregistrées dans le foyer de combustion avec un bon rapport signal-à-bruit. Les résultats montrent qu'en fonction de la répartition entre les injecteurs pilote et principal, le front de flamme possède une structure simple ou double. Une bonne corrélation spatiale est observée entre les distributions de kérosène vapeur et la position du front de flamme. En particulier, aucune zone sans signal de fluorescence n'est observée entre le carburant et le front de flamme. Lorsque la température ou la pression augmente, l'évaporation du carburant s'améliore et la répartition spatiale de du radical OH devient plus homogène dans le foyer, suggérant une combustion partiellement distribuée.
Simultaneous measurements of PLIF-kerosene and PLIF-OH have been successfully performed in a multipoint injection system for various overall equivalence ratio, air inlet temperature between 480 and 730 K and pressure up to 2.2 MPa. Single shot 2D-maps of the spatial distribution of kerosene vapour and OH radical in the combustor have been recorded with good signal-to-noise ratio. Results show that depending on the split between the pilot and the main injectors, the flame front exhibits a single or a double structure. Good spatial correlation between the repartition of the kerosene vapour and the position of the flame front was observed; in particular, no “dark zone” is observed between the fuel and the flame front. As temperature and pressure increase, fuel evaporation improves and the spatial distribution of OH radical becomes more homogeneous in the combustor, suggesting a partially-distributed combustion.
Mot clés : Combustion, Imagerie de fluorescence induite par laser, Aromatiques, Combustion kérosène–air, Structure de flamme, Haute pression
Mikaël Orain 1 ; Frédéric Grisch 1 ; Eric Jourdanneau 1 ; Bjorn Rossow 1 ; Christian Guin 1 ; Brigitte Trétout 1
@article{CRMECA_2009__337_6-7_373_0, author = {Mika\"el Orain and Fr\'ed\'eric Grisch and Eric Jourdanneau and Bjorn Rossow and Christian Guin and Brigitte Tr\'etout}, title = {Simultaneous measurements of equivalence ratio and flame structure in multipoint injectors using {PLIF}}, journal = {Comptes Rendus. M\'ecanique}, pages = {373--384}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.019}, language = {en}, }
TY - JOUR AU - Mikaël Orain AU - Frédéric Grisch AU - Eric Jourdanneau AU - Bjorn Rossow AU - Christian Guin AU - Brigitte Trétout TI - Simultaneous measurements of equivalence ratio and flame structure in multipoint injectors using PLIF JO - Comptes Rendus. Mécanique PY - 2009 SP - 373 EP - 384 VL - 337 IS - 6-7 PB - Elsevier DO - 10.1016/j.crme.2009.06.019 LA - en ID - CRMECA_2009__337_6-7_373_0 ER -
%0 Journal Article %A Mikaël Orain %A Frédéric Grisch %A Eric Jourdanneau %A Bjorn Rossow %A Christian Guin %A Brigitte Trétout %T Simultaneous measurements of equivalence ratio and flame structure in multipoint injectors using PLIF %J Comptes Rendus. Mécanique %D 2009 %P 373-384 %V 337 %N 6-7 %I Elsevier %R 10.1016/j.crme.2009.06.019 %G en %F CRMECA_2009__337_6-7_373_0
Mikaël Orain; Frédéric Grisch; Eric Jourdanneau; Bjorn Rossow; Christian Guin; Brigitte Trétout. Simultaneous measurements of equivalence ratio and flame structure in multipoint injectors using PLIF. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 373-384. doi : 10.1016/j.crme.2009.06.019. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.019/
[1] Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop, Int. J. Multiphase Flow, Volume 13 (1987), pp. 741-757
[2] Atomization and Sprays, Hemisphere Publishing, 1989
[3] The role of fuel preparation in low emission combustion, J. Eng. Gas Turb. Power, Volume 117 (1995), pp. 617-654
[4] Gas Turbines Combustion, Taylor & Francis, 1999
[5] A review of NOx formation under gas-turbine combustion conditions, Combust. Sci. Technol., Volume 87 (1992), pp. 329-362
[6] C. Löfström, J. Engström, M. Richter, C.F. Kaminski, P. Johansson, K. Nyholm, J. Hult, J. Nygren, M. Aldén, Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor, ASME paper N° 2000-GT-0124, 2000
[7] Laser imaging of fuel injection systems and combustors, Proc. Inst. Mech. Eng., Part A: J. Power Energy, Volume 214 (2000), pp. 367-376
[8] Y. Michou, I.S. Carvahlo, C. Chauveau, I. Gökalp, Experimental study of lean premixed and prevaporised turbulent spray combustion, AIAA paper N° 1999-332, 1999
[9] Liquid fuel placement and mixing of generic aeroengine premix module at different operating conditions, J. Eng. Gas Turb. Power, Volume 125 (2003), pp. 901-908
[10] Quantifying fuel/air unmixedness in premixing nozzles using an acetone fluorescence technique, J. Eng. Gas Turb. Power, Volume 124 (2002), pp. 39-45
[11] D. Galley, A. Pubill Melsio, S. Ducruix, F. Lacas, D. Veynante, Experimental study of the dynamics of a LPP injection system, AIAA paper N° 2004-4032, 2004
[12] H. Krämer, F. Dinkelacker, A. Leipertz, Optimization of the mixing quality of real size gas turbine burner with instantaneous planer laser-induced fluorescence imaging, ASME paper N° 99-GT-135, 1999
[13] Y.R. Hicks, R.J. Locke, R.C. Anderson, M. Zaller, H.J. Schock, Imaging fluorescent combustion species in gas turbine flame tubes: on complexities in real systems, AIAA paper N° 97-2837, 1997
[14] Y.R. Hicks, R.J. Locke, R.C. Anderson, Optical measurement and visualization in high-pressure, high-temperature, aviation gas turbine combustors, NASA/TM-2000-210377, 2000
[15] Visualization of fuel distributions in premixed ducts in a low-emission gas turbine combustor using laser techniques, Proc. Combust. Inst., Volume 26 (1996), pp. 2787-2793
[16] Fuel-oil concentration in a gas turbine burner measured with laser-induced fluorescence, Exp. Fluids, Volume 29 (2000), pp. 468-477
[17] P. Baranger, M. Orain, F. Grisch, Fluorescence spectroscopy of kerosene vapour: application to gas turbines, AIAA paper N° 2005-828, 2005
[18] M. Orain, H. Verdier, F. Grisch, Equivalence ratio measurements in kerosene-fuelled LPP injectors using planar laser induced fluorescence, in: 13th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon (Portugal), 26–29 June 2006, Paper 1220
[19] Combustion diagnostics: planar imaging techniques, Proc. Combust. Inst., Volume 21 (1986), pp. 1677-1691
[20] J.H. Frank, M.F. Miller, M.G. Allen, Imaging of laser-induced fluorescence in a high-pressure combustor, AIAA-99-0773, 1999
[21] OH laser-induced fluorescence at high pressures: spectroscopic and two-dimensional measurements using the () transition, Appl. Phys. B, Volume 64 (1997), pp. 585-591
[22] Photophysics of Aromatic Molecules, Wiley–Interscience, London, 1970
[23] Oxygen quenching of toluene fluorescence at elevated temperatures, Appl. Phys. B, Volume 80 (2005), pp. 777-784
Cité par Sources :
Commentaires - Politique