Comptes Rendus
Liquid sheet disintegration at high pressure: An experimental approach
[Atomisation d'une nappe liquide à haute pression : approche expérimentale]
Comptes Rendus. Mécanique, Combustion for aerospace propulsion, Volume 337 (2009) no. 6-7, pp. 481-491.

L'atomisation primaire a été étudiée sur une nappe d'eau de 300 μm d'épaisseur, générée par un injecteur de type aérodynamique. L'objectif de cette recherche a consisté à étudier l'influence de la pression environnante sur les mécanismes d'atomisation dans une plage de 1 à 6 bar. Les techniques expérimentales retenues ont concerne l'Oscillométrie par la Réflexion de l'Intensité Laser (ORIL), la vélocimétrie laser (LDV) et la visualisation par camera vidéo rapide. Les mécanismes d'atomisation, décrits dans la littérature, à la pression atmosphérique, ont été observés en conditions de pression élevées, pour un même rapport de flux de quantité de mouvement entre les deux fluides. Un nouveau mécanisme d'atomisation a été mis en évidence à haute pression. Des corrélations reliant des nombres adimensionnels sont proposées pour quantifier la fréquence d'oscillation globale, la vitesse minimale d'oscillation d'air, la longueur de rupture et la longueur d'onde de l'instabilité transversale de la nappe liquide.

The primary atomization was studied in a 300 μm thickness water sheet, generated by a planar airblast atomizer. The research novelty consisted in increasing the airflow absolute pressure from atmospheric conditions to 6 bar. The experimental techniques employed included Oscillometry by Laser Intensity Reflexion (ORIL), Laser Doppler Velocimetry (LDV) and flow visualization by fast video camera. The atomization mechanisms, described in the literature at atmospheric environments, were observed at high pressure conditions, for a constant momentum flux ratio. Furthermore, a new atomization mechanism was observed at high values of this ratio. Finally, dimensionless relations have been proposed for the global oscillation frequency, minimum air oscillation velocity, break-up distance and transversal wavelength.

Publié le :
DOI : 10.1016/j.crme.2009.06.026
Keywords: Fluid mechanics, Primary break-up, High pressure testing, Airblast atomizer
Mots-clés : Mécanique des fluides, Atomization primaire, Essais haute pression, Atomiseur aérodynamique

V.G. Fernandez 1 ; P. Berthoumie 1 ; G. Lavergne 1

1 ONERA (Office national d'études et de la recherche aérospatiales), Heterogeneous, Multiphase Flows Unit, Aerodynamic and Energetic Models Department, BP 4025, 2, avenue Edouard-Belin, 31055 Toulouse cedex 4, France
@article{CRMECA_2009__337_6-7_481_0,
     author = {V.G. Fernandez and P. Berthoumie and G. Lavergne},
     title = {Liquid sheet disintegration at high pressure: {An} experimental approach},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {481--491},
     publisher = {Elsevier},
     volume = {337},
     number = {6-7},
     year = {2009},
     doi = {10.1016/j.crme.2009.06.026},
     language = {en},
}
TY  - JOUR
AU  - V.G. Fernandez
AU  - P. Berthoumie
AU  - G. Lavergne
TI  - Liquid sheet disintegration at high pressure: An experimental approach
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 481
EP  - 491
VL  - 337
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crme.2009.06.026
LA  - en
ID  - CRMECA_2009__337_6-7_481_0
ER  - 
%0 Journal Article
%A V.G. Fernandez
%A P. Berthoumie
%A G. Lavergne
%T Liquid sheet disintegration at high pressure: An experimental approach
%J Comptes Rendus. Mécanique
%D 2009
%P 481-491
%V 337
%N 6-7
%I Elsevier
%R 10.1016/j.crme.2009.06.026
%G en
%F CRMECA_2009__337_6-7_481_0
V.G. Fernandez; P. Berthoumie; G. Lavergne. Liquid sheet disintegration at high pressure: An experimental approach. Comptes Rendus. Mécanique, Combustion for aerospace propulsion, Volume 337 (2009) no. 6-7, pp. 481-491. doi : 10.1016/j.crme.2009.06.026. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.026/

[1] F. Savart Mémoire sur le choc de deux veines liquids animées de mouvement directement opposés, Ann. De Chim., Volume 55 (1833), pp. 257-310

[2] C. Larricq, Etude de la pulverisation assistée en air d'une nappe liquid et influence d'un vent ionique sur les intabilités hydrodinamiques, Ph.D. thesis, ONERA, Toulouse, 2006

[3] F. Couderc, Développement d'un code de calcul pour la simulation d'écoulements de fluides non miscibles. Application à la désintégration assistée d'un jet liquide par un courant gazeux, Ph.D. thesis, ONERA, Toulouse, 2007

[4] A.H. Lefebvre, Atomization and sprays lecture notes, in: N. Chigier (Ed.), Combustion an International Series, vol. 11, 1989, p. 7

[5] P. Berthoumieu, H. Carentz, A. Muller, Video techniques applied to the characterisation of liquid sheet break-up, in: 9th International Symposium on Flow Visualization, 2000

[6] N. Chigier, C. Dumouchel, Atomization of liquid sheets, in: Prog. Astronaut. Aeronaut., vol. 166, 1996, pp. 241–259

[7] I.S. Carvalho, M.V. Heitor, D. Santos, Liquid film disintegration mechanisms, in: Third International Conference on Multiphase Flow, ICMFi98, Lyon, France, 1998

[8] A. Lozano; F. Barreras; C. Siegler; D. Löw The effects of sheet thickness on the oscillation of an air-blasted liquid sheet, Exp. Fluids, Volume 39 (2004), pp. 127-139

[9] B.E. Stapper, W.A. Sowa, G.S. Samuelsen, An experimental study of the effects of liquid properties on the break-up of a two-dimensional liquid sheet, in: Gas Turbine and Aeroengine Congress and Exposition, 1990

[10] H. Carentz, Étude de la pulvérisation d'une nappe liquide mince, Thèse Université Pierre et Marie Curie, 2000

[11] A. Mansour; N. Chigier Dynamic behaviour of liquid sheets, Phys. Fluids A, Volume 3 (1991) no. 12

[12] B.E. Stapper, G.S. Samuelsen, An experimental study of the break-up of a two-dimensional liquid sheet in the presence of co-flow air shear, AIAA paper 90-0461, 1990

[13] A. Lozano; F. Barreras; G. Hauke; C. Dopazo Longitudinal instabilities in an air-blasted liquid sheet, J. Fluid Mech., Volume 437 (2001), pp. 143-173

[14] L.-P. Hsiang; G.M. Faeth Drop deformation due to shock wave and steady disturbances, Int. J. Multiphase Flow, Volume 21 (1995) no. 4, pp. 545-560

[15] P.H. Marmottant; E. Villermaux On spray formation, J. Fluid Mech., Volume 498 (2004), pp. 73-111

[16] K. Matsuura, K. Suzuki, Y. Kurosawa, Effects of ambient pressure on sprays characteristics a high shear type aero-engine airblast fuel injector, ILASS Europe, Japan, 2008

[17] U. Bhayaraju, C. Hassa, Surface wave propagation and breakup in planar liquid sheets of prefilming airblast atomizers, in: ICLASS Europe, 2006

[18] F.Z. Batarseh, I.V. Roisman, C. Tropea, Effect of primary spray characteristics on the spray generated by an airblast atomizer under high-pressure conditions, in: ILASS Americas, 2008

[19] F. Charru Instabilité non visqueuse des écoulements parallèles, Instabilités Hydrodynamiques, EDP Sciences/CNRS Editions, France, 2007

[20] P. Marmottant; E. Villermaux Fragmentation of stretched liquid ligaments, J. Phys. Fluids, Volume 16 (2004) no. 8, pp. 2732-2741

[21] M.H. Davy; P.W. Loustalan On the sheet breakup of direct-injection gasoline pressure-swirl atomizer, J. Atomization Sprays, Volume 17 (2007), pp. 501-528

[22] C. Dumouchel On the experimental investigation on primary atomization of liquid streams, J. Exp. Fluids, Volume 45 (2008), pp. 371-422

  • Ippei OSHIMA Investigation of a Liquid Sheet Atomization Process by Gas Flows, JAPANESE JOURNAL OF MULTIPHASE FLOW, Volume 38 (2024) no. 3, p. 220 | DOI:10.3811/jjmf.2024.t009
  • Ippei Oshima; Akira Sou Air-blast atomization of a liquid film, Journal of Fluid Mechanics, Volume 985 (2024) | DOI:10.1017/jfm.2024.279
  • Experimental investigations on dynamic wave structures of a prefilming atomizer, Physics of Fluids, Volume 35 (2023) no. 6 | DOI:10.1063/5.0149359
  • Anirudh Asuri Mukundan; Thibaut Ménard; Jorge César Brändle de Motta; Alain Berlemont Detailed numerical simulations of primary atomization of airblasted liquid sheet, International Journal of Multiphase Flow, Volume 147 (2022), p. 103848 | DOI:10.1016/j.ijmultiphaseflow.2021.103848
  • V G Gribin; V A Tishchenko; V V Popov; A A Tishchenko; I Yu Gavrilov; R A Alekseev The main flow parameters characterising the liquid film suction process on the blade surface in a steam turbine, Journal of Physics: Conference Series, Volume 1675 (2020) no. 1, p. 012029 | DOI:10.1088/1742-6596/1675/1/012029
  • T. Inamura; N. Katagata; H. Nishikawa; T. Okabe; K. Fumoto Effects of prefilmer edge thickness on spray characteristics in prefilming airblast atomization, International Journal of Multiphase Flow, Volume 121 (2019), p. 103117 | DOI:10.1016/j.ijmultiphaseflow.2019.103117
  • Nicolas Odier; Guillaume Balarac; Christophe Corre Numerical analysis of the flapping mechanism for a two-phase coaxial jet, International Journal of Multiphase Flow, Volume 106 (2018), p. 164 | DOI:10.1016/j.ijmultiphaseflow.2018.05.028
  • Nicolas Odier; Guillaume Balarac; Christophe Corre; Vincent Moureau Numerical study of a flapping liquid sheet sheared by a high-speed stream, International Journal of Multiphase Flow, Volume 77 (2015), p. 196 | DOI:10.1016/j.ijmultiphaseflow.2015.08.001
  • Thibault Pringuey; R. Stewart Cant Robust Conservative Level Set Method for 3D Mixed-Element Meshes — Application to LES of Primary Liquid-Sheet Breakup, Communications in Computational Physics, Volume 16 (2014) no. 2, p. 403 | DOI:10.4208/cicp.140213.210214a
  • Benjamin Sauer; Amsini Sadiki; Johannes Janicka Numerical Analysis of the Primary Breakup Applying the Embedded DNS Approach to a Generic Prefilming Airblast Atomizer, The Journal of Computational Multiphase Flows, Volume 6 (2014) no. 3, p. 179 | DOI:10.1260/1757-482x.6.3.179

Cité par 10 documents. Sources : Crossref

Commentaires - Politique