[Une nouvelle approche pour la détection d'ondes de surfaces piégées dans un canal à topographie souterraine périodique]
Une nouvelle approche est proposée pour détecter les modes piégés dans les canaux périodiques. La condition suffisante obtenue est nouvelle également dans le cas d'un canal droit avec un corps traversant la surface de l'eau.
A new approach is proposed to detect trapped modes in periodic canals. The obtained sufficient condition is new even for a straight canal with a body piercing the water surface as well.
Accepté le :
Publié le :
Mot clés : Ondes, Ondes de surface marines, Modes piégés, Solutions localisées
Sergey A. Nazarov 1
@article{CRMECA_2009__337_8_610_0, author = {Sergey A. Nazarov}, title = {A novel approach for detecting trapped surface waves in a canal with periodic underwater topography}, journal = {Comptes Rendus. M\'ecanique}, pages = {610--615}, publisher = {Elsevier}, volume = {337}, number = {8}, year = {2009}, doi = {10.1016/j.crme.2009.06.029}, language = {en}, }
TY - JOUR AU - Sergey A. Nazarov TI - A novel approach for detecting trapped surface waves in a canal with periodic underwater topography JO - Comptes Rendus. Mécanique PY - 2009 SP - 610 EP - 615 VL - 337 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2009.06.029 LA - en ID - CRMECA_2009__337_8_610_0 ER -
Sergey A. Nazarov. A novel approach for detecting trapped surface waves in a canal with periodic underwater topography. Comptes Rendus. Mécanique, Volume 337 (2009) no. 8, pp. 610-615. doi : 10.1016/j.crme.2009.06.029. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.029/
[1] Water Waves: The Mathematical Theory with Applications, John Willey & Sons, Inc., New York, 1992 (Reprint of the 1957 original)
[2] Linear Water Waves, Cambridge University Press, Cambridge, 2002
[3] On the spectrum of the Steklov problem in a domain with a peak, Vestnik St. Petersburg Univ. Math., Volume 41 (2008) no. 1, pp. 45-52
[4] The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences, vol. 49, Springer-Verlag, New York, 1985
[5] Vibration and Coupling of Continuous Systems: Asymptotic Methods, Springer-Verlag, Heidelberg, 1989
[6] Elastic waves localized near periodic sets of flaws, Dokl. Ross. Akad. Nauk, Volume 368 (1999) no. 6, pp. 771-773 (English transl.: Dokl. Phys., 44, 10, 1999, pp. 715-717)
[7] On the linear theory of gravity waves: the theorem of existence and uniqueness, Arch. Rational Mech. Anal., Volume 24 (1967), pp. 352-362
[8] Mathematical aspects of trapping modes in the theory of surface waves, J. Fluid Mech., Volume 183 (1987), pp. 421-437
[9] Mathematical analysis of guided water-waves, SIAM J. Appl. Math., Volume 53 (1993), pp. 1507-1550
[10] Uniqueness and trapped modes for surface-piercing cylinders in oblique waves, J. Fluid Mech., Volume 365 (1998), pp. 351-368
[11] Embedded trapped modes in water waves and acoustics, Wave Motion, Volume 45 (2007), pp. 16-29
[12] Expansions in eigenfunctions of an equation with periodic coefficients, Dokl. Acad. Nauk SSSR, Volume 73 (1950), pp. 1117-1120
[13] Floquet theory for partial differential equations [in Russian], Uspekhi Mat. Nauk, Volume 37 (1982) no. 4, pp. 3-52 (English transl.: Russian Math. Surveys, 37, 4, 1982, pp. 1-60)
[14] Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, New York, 1994
[15] Floquet Theory for Partial Differential Equations, Birkhäuser, Basel, 1993
[16] Introduction to the Theory of Linear Nonselfadjoint Operators, Amer. Math. Soc., Providence, 1969
[17] Elliptic boundary value problems with periodic coefficients in a cylinder, Izv. Akad. Nauk SSSR Ser. Mat., Volume 45 (1981) no. 1, pp. 101-112 (English transl.: Math. USSR Izv., 18, 1, 1982, pp. 89-98)
[18] Perturbation Theory for Linear Operators, Springer-Verlag, Heidelberg, 1966
[19] On trapping of surface water waves by cylindrical bodies in a channel, Wave Motion, Volume 45 (2008), pp. 940-951
[20] Concentration of trapped modes in problems of the linearized theory of water waves, Mat. Sb., Volume 199 (2008) no. 12, pp. 53-78 (English transl.: Sb. Math., 199, 12, 2008, pp. 1783-1807)
Cité par Sources :
☆ The author gratefully acknowledges the support by N.W.O., the Netherlands Organization for Scientific Research.
Commentaires - Politique