Comptes Rendus
A new I1-based hyperelastic model for rubber elastic materials
Comptes Rendus. Mécanique, Volume 338 (2010) no. 1, pp. 3-11.

In this Note, we propose a new hyperelastic model for rubber elastic solids applicable over the entire range of deformations. The underlying stored-energy function is a linear combination of the I1-based strain invariants φ(I1;α)=(I1α3α)/(α3α1), where α is a real number. The predictive capabilities of the model are illustrated via comparisons with experimental data available from the literature for a variety of rubbery solids. In addition, the key theoretical and practical strengths of the proposed stored-energy function are discussed.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2009.12.007
Keywords: Solids and structures, Finite strain, Non-Gaussian elasticity, Polyconvexity

Oscar Lopez-Pamies 1

1 Department of Mechanical Engineering, State University of New York, Stony Brook, NY 11794-2300, USA
@article{CRMECA_2010__338_1_3_0,
     author = {Oscar Lopez-Pamies},
     title = {A new $ {I}_{1}$-based hyperelastic model for rubber elastic materials},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {3--11},
     publisher = {Elsevier},
     volume = {338},
     number = {1},
     year = {2010},
     doi = {10.1016/j.crme.2009.12.007},
     language = {en},
}
TY  - JOUR
AU  - Oscar Lopez-Pamies
TI  - A new $ {I}_{1}$-based hyperelastic model for rubber elastic materials
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 3
EP  - 11
VL  - 338
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2009.12.007
LA  - en
ID  - CRMECA_2010__338_1_3_0
ER  - 
%0 Journal Article
%A Oscar Lopez-Pamies
%T A new $ {I}_{1}$-based hyperelastic model for rubber elastic materials
%J Comptes Rendus. Mécanique
%D 2010
%P 3-11
%V 338
%N 1
%I Elsevier
%R 10.1016/j.crme.2009.12.007
%G en
%F CRMECA_2010__338_1_3_0
Oscar Lopez-Pamies. A new $ {I}_{1}$-based hyperelastic model for rubber elastic materials. Comptes Rendus. Mécanique, Volume 338 (2010) no. 1, pp. 3-11. doi : 10.1016/j.crme.2009.12.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.12.007/

[1] R.W. Ogden Non-linear Elastic Deformations, Dover Publications, Mineola, New York, 1997

[2] O. Lopez-Pamies An exact result for the macroscopic response of particle-reinforced Neo-Hookean solids, J. Appl. Mech., Volume 77 (2010), p. 021016-1-021016-5

[3] O. Lopez-Pamies; M.I. Idiart An exact result for the macroscopic response of porous Neo-Hookean solids, J. Elasticity, Volume 95 (2009), pp. 99-105

[4] L.R.G. Treloar The elasticity of a network of long-chain molecules–II, Trans. Faraday Soc., Volume 39 (1943), pp. 241-246

[5] V. Vahapoglu; S. Karadeniz Constitutive equations for isotropic rubber-like materials using phenomenological approach: A bibliography (1930–2003), Rubber Chem. Technol., Volume 79 (2003), pp. 489-498

[6] A.N. Gent A new constitutive relation for rubber, Rubber Chem. Technol., Volume 69 (1996), pp. 59-61

[7] R.W. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond. A, Volume 326 (1972), pp. 565-584

[8] M.F. Beatty An average-stretch full-network model for rubber elasticity, J. Elasticity, Volume 70 (2003), pp. 65-86

[9] C.O. Horgan; G. Saccomandi A molecular basis for the Gent constitutive model of rubber elasticity, J. Elasticity, Volume 68 (2002), pp. 167-176

[10] E.M. Arruda; M.C. Boyce A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, Volume 41 (1993), pp. 389-412

[11] O.H. Yeoh Some forms of the strain energy function for rubber, Rubber Chem. Technol., Volume 66 (1993), pp. 754-771

[12] L.R.G. Treloar Stress-strain data for vulcanised rubber under various types of deformation, Trans. Faraday Soc., Volume 40 (1944), pp. 59-70

[13] L. Meunier; G. Chagnon; D. Favier; L. Orge; P. Vacher Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber, Polymer Testing, Volume 27 (2008), pp. 765-777

[14] N. Lahellec; F. Mazerolle; J.C. Michel Second-order estimate of the macroscopic behavior of periodic hyperelastic composites: Theory and experimental validation, J. Mech. Phys. Solids, Volume 52 (2004), pp. 27-49

[15] M.C. Boyce Direct comparison of the Gent and the Arruda–Boyce constitutive models for rubber elasticity, Rubber Chem. Technol., Volume 69 (1996), pp. 781-785

[16] C.O. Horgan; G. Saccomandi Phenomenological hyperelastic strain-stiffening constitutive models for rubber, Rubber Chem. Technol., Volume 79 (2005), pp. 1-18

[17] J.M. Ball Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1977), pp. 337-403

[18] L. Zee; E. Sternberg Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids, Arch. Ration. Mech. Anal., Volume 83 (1983), pp. 53-90

[19] R.S. Rivlin; D.W. Saunders Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber, Philos. Trans. R. Soc. London A, Volume 243 (1951), pp. 251-288

[20] L.R.G. Treloar The Physics of Rubber Elasticity, Oxford University Press, 2005

[21] E. Pucci; G. Saccomandi A note on the Gent model for rubber-like materials, Rubber Chem. Technol., Volume 75 (2002), pp. 839-851

[22] P.W. Bridgman The compression of sixty-one solid substances to 25.000 kg/cm, determined by a new rapid method, Proc. Am. Acad. Arts Sci., Volume 76 (1945), pp. 9-24

[23] O. Lopez-Pamies; R. Garcia; E. Chabert; J.-Y. Cavaillé; P. Ponte Castañeda Multiscale modeling of oriented thermoplastic elastomers with lamellar morphology, J. Mech. Phys. Solids, Volume 56 (2008), pp. 3206-3223

[24] C. Miehe Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials, Eur. J. Mech. A, Volume 14 (1995), pp. 697-720

[25] R.W. Ogden; R.D. Roxburgh A pseudo-elastic model for the Mullins effect in filled rubber, Proc. R. Soc. Lond. A, Volume 455 (1999), pp. 2861-2877

[26] O. Lopez-Pamies; P. Ponte Castañeda On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: I–Theory, J. Mech. Phys. Solids, Volume 54 (2006), pp. 807-830

[27] O. Lopez-Pamies; P. Ponte Castañeda On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations. II–Application to cylindrical fibers, J. Mech. Phys. Solids, Volume 54 (2006), pp. 831-863

[28] M. Brun; O. Lopez-Pamies; P. Ponte Castañeda Homogenization estimates for fiber-reinforced elastomers with periodic microstructures, Internat. J. Solids Structures, Volume 44 (2007), pp. 5953-5979

[29] M. Agoras; O. Lopez-Pamies; P. Ponte Castañeda A general hyperelastic model for incompressible fiber-reinforced elastomers, J. Mech. Phys. Solids, Volume 57 (2009), pp. 268-286

[30] O. Lopez-Pamies; P. Ponte Castañeda Second-order estimates for the macroscopic response and loss of ellipticity in porous rubbers at large deformations, J. Elasticity, Volume 76 (2004), pp. 247-287

[31] O. Lopez-Pamies; P. Ponte Castañeda Homogenization-based constitutive models for porous elastomers and implications for microscopic instabilities. I–Analysis, J. Mech. Phys. Solids, Volume 55 (2007), pp. 1677-1701

[32] O. Lopez-Pamies; P. Ponte Castañeda Homogenization-based constitutive models for porous elastomers and implications for microscopic instabilities. II–Results, J. Mech. Phys. Solids, Volume 55 (2007), pp. 1702-1728

  • Chao Wang; Zhi Zhao; Zeyu Li; Yingqi Jia; Arvin Ardebili Sharma; Xiaojia Shelly Zhang Direct ink writing of magnetic soft materials with optimized printing path, Additive Manufacturing, Volume 105 (2025), p. 104770 | DOI:10.1016/j.addma.2025.104770
  • Hang Ren; Dan Zhao; Liqiang Dong; Shaogang Liu; Jinshui Yang; Tianyi Zhao; Yongle Fan Deep learning accelerates reverse design of Magnetorheological elastomer, Composites Science and Technology, Volume 265 (2025), p. 111148 | DOI:10.1016/j.compscitech.2025.111148
  • Matteo Pelliciari; Stefano Sirotti; Angelo Aloisio; Angelo Marcello Tarantino Hyperelastic model for nonlinear elastic deformations of graphene-based polymer nanocomposites, International Journal of Solids and Structures, Volume 308 (2025), p. 113144 | DOI:10.1016/j.ijsolstr.2024.113144
  • Oluwadara Moronkeji; Fabio Sozio; Kamalendu Ghosh; Amira Meddeb; Amirhossein Farahani; Zoubeida Ounaies; Ioannis Chasiotis; Oscar Lopez-Pamies The nonlinear elastic deformation of liquid inclusions embedded in elastomers, Journal of the Mechanics and Physics of Solids, Volume 200 (2025), p. 106126 | DOI:10.1016/j.jmps.2025.106126
  • Zehui Lin; Zahra Hooshmand-Ahoor; Laurence Bodelot; Kostas Danas Experiments and modeling of mechanically-soft, hard magnetorheological foams with potential applications in haptic sensing, Journal of the Mechanics and Physics of Solids, Volume 203 (2025), p. 106218 | DOI:10.1016/j.jmps.2025.106218
  • Kostas Danas; Masami Nakano; Gaël Sebald A continuum magneto-viscoelastic model for isotropic soft magnetorheological elastomers: experiments, theory and numerical implementation, Mechanics of Materials, Volume 200 (2025), p. 105187 | DOI:10.1016/j.mechmat.2024.105187
  • Jacopo Ciambella; Giovanni Lancioni; Nico Stortini Viscous Effects on the Crack Propagation in Elastomers, Multiscale and Multiphysics Modelling for Advanced and Sustainable Materials, Volume 231 (2025), p. 217 | DOI:10.1007/978-3-031-84379-2_17
  • Nurul Hassan Shah; Shaikh Faruque Ali A constitutive framework for modelling elastomers, soft tissues and liquid crystal elastomers, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 481 (2025) no. 2312 | DOI:10.1098/rspa.2025.0017
  • Zhi Zhao; Rahul Dev Kundu; Ole Sigmund; Xiaojia Shelly Zhang Extreme nonlinearity by layered materials through inverse design, Science Advances, Volume 11 (2025) no. 20 | DOI:10.1126/sciadv.adr6925
  • Kristóf Havasi; Attila Kossa A novel approach to calculating the equibiaxial stress response from biaxial tests with non-homogeneous deformations, The Journal of Strain Analysis for Engineering Design, Volume 60 (2025) no. 4, p. 272 | DOI:10.1177/03093247241312393
  • Afshin Anssari-Benam A generalised W(I1,I2) strain energy function of binomial form with unified applicability across various isotropic incompressible soft solids, Acta Mechanica, Volume 235 (2024) no. 1, pp. 99-132 | DOI:10.1007/s00707-023-03677-1 | Zbl:1531.74013
  • Chao Wang; Zhi Zhao; Joonsu Han; Arvin Ardebili Sharma; Hua Wang; Xiaojia Shelly Zhang Wireless Magnetic Robot for Precise Hierarchical Control of Tissue Deformation, Advanced Science, Volume 11 (2024) no. 35 | DOI:10.1002/advs.202308619
  • Sana Zulfiqar; Abdullah Aziz Saad; Ilyas Ahmad Huqqani; Zulkifli Ahmad; Feizal Yusof; Zuraihana Bachok Hyper-Elastic Characterization of Polydimethylsiloxane by Optimization Algorithms and Finite Element Methods, Arabian Journal for Science and Engineering, Volume 49 (2024) no. 11, p. 14965 | DOI:10.1007/s13369-024-08814-z
  • Xianqi Wan; Yaru Zhang; Qiang Zhang; Liqun Zhang; Fanzhu Li User subroutines platform development for rubber hyperelastic constitutive models and its application in finite element analysis, Computational Materials Science, Volume 237 (2024), p. 112885 | DOI:10.1016/j.commatsci.2024.112885
  • Victor Lefèvre; Fabio Sozio; Oscar Lopez-Pamies Abaqus implementation of a large family of finite viscoelasticity models, Finite Elements in Analysis and Design, Volume 232 (2024), p. 104114 | DOI:10.1016/j.finel.2024.104114
  • Nurul Hassan Shah; Shaikh Faruque Ali A hyperelastic strain energy function for isotropic rubberlike materials, International Journal of Mechanical Sciences, Volume 279 (2024), p. 109472 | DOI:10.1016/j.ijmecsci.2024.109472
  • Afshin Anssari-Benam A generalisation of the Pucci–Saccomandi model of rubber elasticity, International Journal of Non-Linear Mechanics, Volume 158 (2024), p. 104578 | DOI:10.1016/j.ijnonlinmec.2023.104578
  • Ricardo Díaz-Calleja; Damian Ginestar; Pedro Llovera-Segovia; Alfredo Quijano-López Modelling of bifurcation of electro-elastic materials: Advantages and limits of the Stroh's compound matrix formulation for spherical shells, International Journal of Non-Linear Mechanics, Volume 161 (2024), p. 104686 | DOI:10.1016/j.ijnonlinmec.2024.104686
  • Yanjun Tang; Jingtian Kang General framework to implement isotropic and anisotropic hyperelastic biomaterials into finite element method, International Journal of Non-Linear Mechanics, Volume 166 (2024), p. 104864 | DOI:10.1016/j.ijnonlinmec.2024.104864
  • Fabio Sozio; François Lallet; Antoine Perriot; Oscar Lopez-Pamies The nonlinear elastic response of bicontinuous rubber blends, International Journal of Solids and Structures, Volume 290 (2024), p. 112660 | DOI:10.1016/j.ijsolstr.2024.112660
  • Ali Ariana; Ardeshir Karami Mohammadi Nonlinear vibrations and static bifurcation of a hyperelastic pipe conveying fluid, Journal of Vibration and Control (2024) | DOI:10.1177/10775463241294121
  • Raj Kumar; Paritosh Mahata An intermolecular interaction based constitutive model for non-crystalline phase of solid materials, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 46 (2024) no. 7 | DOI:10.1007/s40430-024-05015-5
  • Ellen Kuhl; Alain Goriely I too I2: A new class of hyperelastic isotropic incompressible models based solely on the second invariant, Journal of the Mechanics and Physics of Solids, Volume 188 (2024), p. 105670 | DOI:10.1016/j.jmps.2024.105670
  • Evan Breedlove; Chao Chen; David Lindeman; Oscar Lopez-Pamies Cavitation in elastomers: A review of the evidence against elasticity, Journal of the Mechanics and Physics of Solids, Volume 188 (2024), p. 105678 | DOI:10.1016/j.jmps.2024.105678
  • Farhad Kamarei; Aditya Kumar; Oscar Lopez-Pamies The poker-chip experiments of synthetic elastomers explained, Journal of the Mechanics and Physics of Solids, Volume 188 (2024), p. 105683 | DOI:10.1016/j.jmps.2024.105683
  • M. de Lorenzo; P. Le Tallec; O. Lopez-Pamies; P. Bussetta Filled elastomers sliding over smooth obstacles: Experiments and modeling in large deformations, Journal of the Mechanics and Physics of Solids, Volume 193 (2024), p. 105899 | DOI:10.1016/j.jmps.2024.105899
  • Teng-Fei Zhang; Liao-Liang Ke; Jie Su; Yuan-Jie Shu Experimental and modeling studies on contact mechanics of silicone rubbers, Mechanics of Advanced Materials and Structures, Volume 31 (2024) no. 9, p. 1978 | DOI:10.1080/15376494.2022.2146241
  • Zhi Zhao; Chao Wang; Xiaojia Shelly Zhang Multiphysics topology optimization of magnetic materials with continuous magnetization orientations, Mechanics of Materials, Volume 198 (2024), p. 105089 | DOI:10.1016/j.mechmat.2024.105089
  • Konstantin Volokh Failure of Soft Solids, Modeling Failure and Fracture of Soft Solids and Fluids (2024), p. 57 | DOI:10.1007/978-3-031-73287-4_3
  • Arif Masud; Ignasius P.A. Wijaya; Oscar Lopez-Pamies, 2023 | DOI:10.2139/ssrn.4349239
  • Amin Saber; Ramin Sedaghati The Modeling of Magnetorheological Elastomers: A State‐of‐the‐Art Review, Advanced Engineering Materials, Volume 25 (2023) no. 16 | DOI:10.1002/adem.202300182
  • Chao Wang; Zhi Zhao; Xiaojia Shelly Zhang Inverse design of magneto-active metasurfaces and robots: Theory, computation, and experimental validation, Computer Methods in Applied Mechanics and Engineering, Volume 413 (2023), p. 116065 | DOI:10.1016/j.cma.2023.116065
  • Bhavesh Shrimali; Oscar Lopez-Pamies The “pure-shear” fracture test for viscoelastic elastomers and its revelation on Griffith fracture, Extreme Mechanics Letters, Volume 58 (2023), p. 101944 | DOI:10.1016/j.eml.2022.101944
  • Diab W. Abueidda; Seid Koric; Erman Guleryuz; Nahil A. Sobh Enhanced physics-informed neural networks for hyperelasticity, International Journal for Numerical Methods in Engineering, Volume 124 (2023) no. 7, pp. 1585-1601 | DOI:10.1002/nme.7176 | Zbl:1531.68071
  • Weichen Li; Yingqi Jia; Fengwen Wang; Ole Sigmund; Xiaojia Shelly Zhang Programming and physical realization of extreme three-dimensional responses of metastructures under large deformations, International Journal of Engineering Science, Volume 191 (2023), p. 20 (Id/No 103881) | DOI:10.1016/j.ijengsci.2023.103881 | Zbl:1549.74139
  • B. Shrimali; O. Lopez-Pamies The delayed fracture test for viscoelastic elastomers, International Journal of Fracture, Volume 242 (2023) no. 1, p. 23 | DOI:10.1007/s10704-023-00700-3
  • Jinlong Guo; Krishnaswamy Ravi-Chandar On crack nucleation and propagation in elastomers: I. In situ optical and X-ray experimental observations, International Journal of Fracture, Volume 243 (2023) no. 1, p. 1 | DOI:10.1007/s10704-023-00714-x
  • K. Srikanth; P. Sreejith; K. Arvind; K. Kannan; M. Pandey An efficient mode-of-deformation dependent rate-type constitutive relation for multi-modal cyclic loading of elastomers, International Journal of Plasticity, Volume 163 (2023), p. 103517 | DOI:10.1016/j.ijplas.2023.103517
  • Zhi Zhao; Chao Wang; Xiaojia Shelly Zhang Tuning Buckling Behaviors in Magnetically Active Structures: Topology Optimization and Experimental Validation, Journal of Applied Mechanics, Volume 90 (2023) no. 9 | DOI:10.1115/1.4062536
  • Afshin Anssari-Benam Large isotropic elastic deformations: on a comprehensive model to correlate the theory and experiments for incompressible rubber-like materials, Journal of Elasticity, Volume 153 (2023) no. 2, pp. 219-244 | DOI:10.1007/s10659-022-09982-5 | Zbl:1521.74023
  • Bhavesh Shrimali; Kamalendu Ghosh; Oscar Lopez-Pamies The nonlinear viscoelastic response of suspensions of vacuous bubbles in rubber. I: Gaussian rubber with constant viscosity, Journal of Elasticity, Volume 153 (2023) no. 4-5, pp. 479-508 | DOI:10.1007/s10659-021-09868-y | Zbl:1524.74083
  • Ignasius P.A. Wijaya; Oscar Lopez-Pamies; Arif Masud A unified determinant-preserving formulation for compressible/incompressible finite viscoelasticity, Journal of the Mechanics and Physics of Solids, Volume 177 (2023), p. 105312 | DOI:10.1016/j.jmps.2023.105312
  • Hüsnü Dal; Funda Aksu Denli; Alp Kağan Açan; Michael Kaliske Data-driven hyperelasticity, Part I: A canonical isotropic formulation for rubberlike materials, Journal of the Mechanics and Physics of Solids, Volume 179 (2023), p. 105381 | DOI:10.1016/j.jmps.2023.105381
  • Raj Kumar; Paritosh Mahata A strain energy density potential for non-crystalline solids using molecular interactions, Mechanics of Solids, Volume 58 (2023) no. 6, pp. 2097-2114 | DOI:10.3103/s0025654423601052 | Zbl:1546.74005
  • Wei Wang; Yang Liu; Zongwu Xie A Modified Constitutive Model for Isotropic Hyperelastic Polymeric Materials and Its Parameter Identification, Polymers, Volume 15 (2023) no. 15, p. 3172 | DOI:10.3390/polym15153172
  • Subraya Krishna Bhat; Keerthan A., RAiSE-2023 (2023), p. 104 | DOI:10.3390/engproc2023059104
  • João C. A D. Filho; Luiz C. S. Nunes; José Xavier An Open-Source 2D Digital Image Correlation Software: Case Study on the Hyperelastic Behaviour of Silicone-Based Material, Testing and Experimentation in Civil Engineering, Volume 41 (2023), p. 397 | DOI:10.1007/978-3-031-29191-3_33
  • Soumya Mukherjee A general family of limited stretchable models in finite deformation elasticity, Archive of Applied Mechanics, Volume 92 (2022) no. 12, p. 3575 | DOI:10.1007/s00419-022-02251-w
  • M. Rambausek; D. Mukherjee; K. Danas A computational framework for magnetically hard and soft viscoelastic magnetorheological elastomers, Computer Methods in Applied Mechanics and Engineering, Volume 391 (2022), p. 37 (Id/No 114500) | DOI:10.1016/j.cma.2021.114500 | Zbl:1507.74148
  • Afshin Anssari-Benam; Cornelius O. Horgan A three-parameter structurally motivated robust constitutive model for isotropic incompressible unfilled and filled rubber-like materials, European Journal of Mechanics. A. Solids, Volume 95 (2022), p. 15 (Id/No 104605) | DOI:10.1016/j.euromechsol.2022.104605 | Zbl:1501.74004
  • Diab W. Abueidda; Seid Koric; Rashid Abu Al-Rub; Corey M. Parrott; Kai A. James; Nahil A. Sobh A deep learning energy method for hyperelasticity and viscoelasticity, European Journal of Mechanics. A. Solids, Volume 95 (2022), p. 9 (Id/No 104639) | DOI:10.1016/j.euromechsol.2022.104639 | Zbl:1490.74120
  • Carlos Perez-Garcia; Josue Aranda-Ruiz; Ramon Zaera; Daniel Garcia-Gonzalez Beam formulation and FE framework for architected structures under finite deformations, European Journal of Mechanics. A. Solids, Volume 96 (2022), p. 11 (Id/No 104706) | DOI:10.1016/j.euromechsol.2022.104706 | Zbl:1498.74042
  • F. Aghaienezhad; R. Ansari; M. Darvizeh On the Stability of Hyperelastic Spherical and Cylindrical Shells Subjected to External Pressure Using a Numerical Approach, International Journal of Applied Mechanics, Volume 14 (2022) no. 10 | DOI:10.1142/s1758825122500946
  • Weiting Chen; Ya-Pu Zhao Thermo-mechanically coupled constitutive equations for soft elastomers with arbitrary initial states, International Journal of Engineering Science, Volume 178 (2022), p. 30 (Id/No 103730) | DOI:10.1016/j.ijengsci.2022.103730 | Zbl:1549.74191
  • Yanjun Tang; Jingtian Kang; Yan Qing Wang Cavity expansion in nonlinear viscoelastic solids: A nonlinear dynamic study, International Journal of Non-Linear Mechanics, Volume 144 (2022), p. 104076 | DOI:10.1016/j.ijnonlinmec.2022.104076
  • Aditya Kumar; Leon M. Dean; Mostafa Yourdkhani; Allen Guo; Cole BenVau; Nancy R. Sottos; Philippe H. Geubelle Surface pattern formation induced by oscillatory loading of frontally polymerized gels, Journal of the Mechanics and Physics of Solids, Volume 168 (2022), p. 105055 | DOI:10.1016/j.jmps.2022.105055
  • Michel Destrade; Giuseppe Saccomandi Plane-polarised finite-amplitude shear waves in deformed incompressible materials, Mathematics and Mechanics of Solids, Volume 27 (2022) no. 8, pp. 1494-1503 | DOI:10.1177/10812865221089588 | Zbl:7601720
  • Afshin Anssari-Benam; Cornelius O. Horgan New constitutive models for the finite deformation of isotropic compressible elastomers, Mechanics of Materials, Volume 172 (2022), p. 104403 | DOI:10.1016/j.mechmat.2022.104403
  • D. Jalocha A nonlinear viscoelastic constitutive model taking into account of physical aging, Mechanics of Time-Dependent Materials, Volume 26 (2022) no. 1, p. 21 | DOI:10.1007/s11043-020-09473-x
  • Hong He; Qiang Zhang; Yaru Zhang; Jianfeng Chen; Liqun Zhang; Fanzhu Li A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material, Nano Materials Science, Volume 4 (2022) no. 2, p. 64 | DOI:10.1016/j.nanoms.2021.07.003
  • A. E. Ehret; A. Stracuzzi Variations on Ogden’s model: close and distant relatives, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 380 (2022) no. 2234 | DOI:10.1098/rsta.2021.0322
  • L. Angela Mihai Finite Elasticity as Prior Information, Stochastic Elasticity, Volume 55 (2022), p. 7 | DOI:10.1007/978-3-031-06692-4_2
  • Hüsnü Dal; Kemal Açıkgöz; Yashar Badienia On the Performance of Isotropic Hyperelastic Constitutive Models for Rubber-Like Materials: A State of the Art Review, Applied Mechanics Reviews, Volume 73 (2021) no. 2 | DOI:10.1115/1.4050978
  • Alireza Beheshti; Ramin Sedaghati; Subhash Rakheja Transversely isotropic magnetoactive elastomers: theory and experiments, Archive of Applied Mechanics, Volume 91 (2021) no. 1, p. 375 | DOI:10.1007/s00419-020-01778-0
  • Xiaojia Shelly Zhang; Heng Chi; Zhi Zhao Topology optimization of hyperelastic structures with anisotropic fiber reinforcement under large deformations, Computer Methods in Applied Mechanics and Engineering, Volume 378 (2021), p. 31 (Id/No 113496) | DOI:10.1016/j.cma.2020.113496 | Zbl:1506.74315
  • Alireza Beheshti; Ramin Sedaghati; Subhash Rakheja Finite deformation analysis of isotropic magnetoactive elastomers, Continuum Mechanics and Thermodynamics, Volume 33 (2021) no. 1, p. 163 | DOI:10.1007/s00161-020-00897-x
  • K. Kane; J. Jumel; A. Mbiakop-Ngassa; F. Lallet; Jean-Michel Vacherand; Martin E.R. Shanahan Rubber cord adhesion inflation test: Effect of constitutive rubber model on evaluation of G, Engineering Fracture Mechanics, Volume 244 (2021), p. 107547 | DOI:10.1016/j.engfracmech.2021.107547
  • Ingyun Chung; Sunyoung Im; Maenghyo Cho A neural network constitutive model for hyperelasticity based on molecular dynamics simulations, International Journal for Numerical Methods in Engineering, Volume 122 (2021) no. 1, pp. 5-24 | DOI:10.1002/nme.6459 | Zbl:1548.74089
  • Afshin Anssari-Benam; Andrea Bucchi; Giuseppe Saccomandi On the central role of the invariant I2 in nonlinear elasticity, International Journal of Engineering Science, Volume 163 (2021), p. 27 (Id/No 103486) | DOI:10.1016/j.ijengsci.2021.103486 | Zbl:1549.74113
  • S. Mukherjee; A.K. Mandal A generalized strain energy function using fractional powers: Application to isotropy, transverse isotropy, orthotropy, and residual stress symmetry, International Journal of Non-Linear Mechanics, Volume 128 (2021), p. 103617 | DOI:10.1016/j.ijnonlinmec.2020.103617
  • Afshin Anssari-Benam; Andrea Bucchi A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers, International Journal of Non-Linear Mechanics, Volume 128 (2021), p. 103626 | DOI:10.1016/j.ijnonlinmec.2020.103626
  • P. Šulc; J. Kopačka; L. Pešek; V. Bula Hyperelastic proportional damping for numerical non-conservative dynamic models of hard rubbers under large deformations, International Journal of Non-Linear Mechanics, Volume 137 (2021), p. 103823 | DOI:10.1016/j.ijnonlinmec.2021.103823
  • Daniel Garcia-Gonzalez; Mokarram Hossain A microstructural-based approach to model magneto-viscoelastic materials at finite strains, International Journal of Solids and Structures, Volume 208-209 (2021), p. 119 | DOI:10.1016/j.ijsolstr.2020.10.028
  • Fang Ding; Tingli Liu; Huan Zhang; Lunyang Liu; Yunqi Li Stress‐strain curves for polyurethane elastomers: A statistical assessment of constitutive models, Journal of Applied Polymer Science, Volume 138 (2021) no. 39 | DOI:10.1002/app.51269
  • Afshin Anssari-Benam; Cornelius O. Horgan On modelling simple shear for isotropic incompressible rubber-like materials, Journal of Elasticity, Volume 147 (2021) no. 1-2, pp. 83-111 | DOI:10.1007/s10659-021-09869-x | Zbl:1481.74071
  • Hossein Sahhaf Naeini; Mohammad Hossein Soorgee Experimental investigation on sphere pig movement in multiple thickness pipe, Journal of Natural Gas Science and Engineering, Volume 95 (2021), p. 104152 | DOI:10.1016/j.jngse.2021.104152
  • Cyprian Suchocki; Stanisław Jemioło Polyconvex hyperelastic modeling of rubberlike materials, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 43 (2021) no. 7 | DOI:10.1007/s40430-021-03062-w
  • Víctor Jesús Amores; Khanh Nguyen; Francisco Javier Montáns On the network orientational affinity assumption in polymers and the micro–macro connection through the chain stretch, Journal of the Mechanics and Physics of Solids, Volume 148 (2021), p. 104279 | DOI:10.1016/j.jmps.2020.104279
  • Aditya Kumar; Oscar Lopez-Pamies The poker-chip experiments of Gent and Lindley (1959) explained, Journal of the Mechanics and Physics of Solids, Volume 150 (2021), p. 104359 | DOI:10.1016/j.jmps.2021.104359
  • Kamalendu Ghosh; Oscar Lopez-Pamies On the two-potential constitutive modeling of dielectric elastomers, Meccanica, Volume 56 (2021) no. 6, pp. 1505-1521 | DOI:10.1007/s11012-020-01179-1 | Zbl:1520.74023
  • Mersim Redzematovic; Kedar Kirane Homogenization of the Mooney-Rivlin coefficients of graphene-based soft sandwich nanocomposites, Mechanics of Soft Materials, Volume 3 (2021) no. 1 | DOI:10.1007/s42558-021-00036-9
  • Zhigang Wei; Shubao Yang An elastic model for rubber-like materials based on a force-equivalent network, European Journal of Mechanics. A. Solids, Volume 84 (2020), p. 15 (Id/No 104078) | DOI:10.1016/j.euromechsol.2020.104078 | Zbl:1477.74008
  • Cyprian Suchocki; Stanisław Jemioło On finite element implementation of polyconvex incompressible hyperelasticity: theory, coding and applications, International Journal of Computational Methods, Volume 17 (2020) no. 8, p. 31 (Id/No 1950049) | DOI:10.1142/s021987621950049x | Zbl:1550.74417
  • Victor Lefèvre; Kostas Danas; Oscar Lopez-Pamies Two families of explicit models constructed from a homogenization solution for the magnetoelastic response of MREs containing iron and ferrofluid particles, International Journal of Non-Linear Mechanics, Volume 119 (2020), p. 103362 | DOI:10.1016/j.ijnonlinmec.2019.103362
  • Bhavesh Shrimali; William J. Parnell; Oscar Lopez-Pamies A simple explicit model constructed from a homogenization solution for the large-strain mechanical response of elastomeric syntactic foams, International Journal of Non-Linear Mechanics, Volume 126 (2020), p. 103548 | DOI:10.1016/j.ijnonlinmec.2020.103548
  • Victor Lefèvre Electroelastic Response of Isotropic Dielectric Elastomer Composites with Deformation-Dependent Apparent-Permittivity Matrix, Journal of Applied Mechanics, Volume 87 (2020) no. 9 | DOI:10.1115/1.4047289
  • Amirheshmat Khedmati Bazkiaei; Kourosh Heidari Shirazi; Mohammad Shishesaz A framework for model base hyper-elastic material simulation, Journal of Rubber Research, Volume 23 (2020) no. 4, p. 287 | DOI:10.1007/s42464-020-00057-5
  • Marc Leonard; Naibin Wang; Oscar Lopez-Pamies; Toshio Nakamura The nonlinear elastic response of filled elastomers: Experiments vs. theory for the basic case of particulate fillers of micrometer size, Journal of the Mechanics and Physics of Solids, Volume 135 (2020), p. 103781 | DOI:10.1016/j.jmps.2019.103781
  • Hüsnü Dal; Osman Gültekin; Kemal Açıkgöz An extended eight-chain model for hyperelastic and finite viscoelastic response of rubberlike materials: Theory, experiments and numerical aspects, Journal of the Mechanics and Physics of Solids, Volume 145 (2020), p. 104159 | DOI:10.1016/j.jmps.2020.104159
  • P. Ciarletta On the controllability of a creasing singularity in a nonlinear elastic circular sector, Mechanics of Materials, Volume 141 (2020), p. 103264 | DOI:10.1016/j.mechmat.2019.103264
  • D. Jalocha Payne effect: A Constitutive model based on a dynamic strain amplitude dependent spectrum of relaxation time, Mechanics of Materials, Volume 148 (2020), p. 103526 | DOI:10.1016/j.mechmat.2020.103526
  • Ali Ariana; Ardeshir Karami Mohammadi Nonlinear dynamics and bifurcation behavior of a sandwiched micro-beam resonator consist of hyper-elastic dielectric film, Sensors and Actuators A: Physical, Volume 312 (2020), p. 112113 | DOI:10.1016/j.sna.2020.112113
  • Aditya Kumar; Oscar Lopez-Pamies The phase-field approach to self-healable fracture of elastomers: A model accounting for fracture nucleation at large, with application to a class of conspicuous experiments, Theoretical and Applied Fracture Mechanics, Volume 107 (2020), p. 102550 | DOI:10.1016/j.tafmec.2020.102550
  • Amira B. Meddeb; Tim Tighe; Zoubeida Ounaies; Oscar Lopez-Pamies Extreme enhancement of the nonlinear elastic response of elastomer nanoparticulate composites via interphases, Composites Part B: Engineering, Volume 156 (2019), p. 166 | DOI:10.1016/j.compositesb.2018.08.064
  • Mostafa Asadi Khanouki; Ramin Sedaghati; Masoud Hemmatian Experimental characterization and microscale modeling of isotropic and anisotropic magnetorheological elastomers, Composites Part B: Engineering, Volume 176 (2019), p. 107311 | DOI:10.1016/j.compositesb.2019.107311
  • Noy Cohen Programming the equilibrium swelling response of heterogeneous polymeric gels, International Journal of Solids and Structures, Volume 178-179 (2019), p. 81 | DOI:10.1016/j.ijsolstr.2019.06.023
  • Bhavesh Shrimali; Victor Lefèvre; Oscar Lopez-Pamies A simple explicit homogenization solution for the macroscopic elastic response of isotropic porous elastomers, Journal of the Mechanics and Physics of Solids, Volume 122 (2019), p. 364 | DOI:10.1016/j.jmps.2018.09.026
  • Noy Cohen; Robert M. McMeeking On the swelling induced microstructural evolution of polymer networks in gels, Journal of the Mechanics and Physics of Solids, Volume 125 (2019), p. 666 | DOI:10.1016/j.jmps.2019.01.018
  • Konstantin Volokh Viscoelasticity, Mechanics of Soft Materials (2019), p. 139 | DOI:10.1007/978-981-13-8371-7_10
  • Giuseppe Zurlo; Michel Destrade; Tongqing Lu Fine tuning the electro-mechanical response of dielectric elastomers, Applied Physics Letters, Volume 113 (2018) no. 16 | DOI:10.1063/1.5053643
  • Michael Drass; Gregor Schwind; Jens Schneider; Stefan Kolling Adhesive connections in glass structures—part I: experiments and analytics on thin structural silicone, Glass Structures Engineering, Volume 3 (2018) no. 1, p. 39 | DOI:10.1007/s40940-017-0046-5
  • Aditya Kumar; K. Ravi-Chandar; Oscar Lopez-Pamies The configurational-forces view of the nucleation and propagation of fracture and healing in elastomers as a phase transition, International Journal of Fracture, Volume 213 (2018) no. 1, p. 1 | DOI:10.1007/s10704-018-0302-y
  • Noy Cohen A generalized electro-elastic theory of polymer networks, Journal of the Mechanics and Physics of Solids, Volume 110 (2018), p. 173 | DOI:10.1016/j.jmps.2017.10.002
  • Aditya Kumar; Gilles A. Francfort; Oscar Lopez-Pamies Fracture and healing of elastomers: A phase-transition theory and numerical implementation, Journal of the Mechanics and Physics of Solids, Volume 112 (2018), p. 523 | DOI:10.1016/j.jmps.2018.01.003
  • Yuhai Xiang; Danming Zhong; Peng Wang; Guoyong Mao; Honghui Yu; Shaoxing Qu A general constitutive model of soft elastomers, Journal of the Mechanics and Physics of Solids, Volume 117 (2018), p. 110 | DOI:10.1016/j.jmps.2018.04.016
  • M. Rama Mohan Rao; M.R.S. Satyanarayana; V.V.S. Bhaskara Raju; Y. Venubabu Dynamic Analysis of Elastomers, Materials Today: Proceedings, Volume 5 (2018) no. 1, p. 2650 | DOI:10.1016/j.matpr.2018.01.045
  • L. Angela Mihai; Thomas E. Woolley; Alain Goriely Stochastic isotropic hyperelastic materials: constitutive calibration and model selection, Proceedings of the Royal Society of London. A. Mathematical, Physical and Engineering Sciences, Volume 474 (2018) no. 2211, p. 20 (Id/No 20170858) | DOI:10.1098/rspa.2017.0858 | Zbl:1402.74008
  • Xavier Poulain; Oscar Lopez-Pamies; K. Ravi-Chandar Damage in elastomers: healing of internally nucleated cavities and micro-cracks, Soft Matter, Volume 14 (2018) no. 22, p. 4633 | DOI:10.1039/c8sm00238j
  • José Crespo; Marcos Latorre; Francisco Javier Montáns WYPIWYG hyperelasticity for isotropic, compressible materials, Computational Mechanics, Volume 59 (2017) no. 1, pp. 73-92 | DOI:10.1007/s00466-016-1335-6 | Zbl:1398.74023
  • H. Chi; L. Beirão da Veiga; G. H. Paulino Some basic formulations of the virtual element method (VEM) for finite deformations, Computer Methods in Applied Mechanics and Engineering, Volume 318 (2017), pp. 148-192 | DOI:10.1016/j.cma.2016.12.020 | Zbl:1439.74397
  • Jonas Dispersyn; Stijn Hertelé; Wim De Waele; Jan Belis Assessment of hyperelastic material models for the application of adhesive point-fixings between glass and metal, International Journal of Adhesion and Adhesives, Volume 77 (2017), p. 102 | DOI:10.1016/j.ijadhadh.2017.03.017
  • X. Poulain; V. Lefèvre; O. Lopez-Pamies; K. Ravi-Chandar Damage in elastomers: nucleation and growth of cavities, micro-cracks, and macro-cracks, International Journal of Fracture, Volume 205 (2017) no. 1, p. 1 | DOI:10.1007/s10704-016-0176-9
  • Marcos Latorre; Erica De Rosa; Francisco J. Montáns Understanding the need of the compression branch to characterize hyperelastic materials, International Journal of Non-Linear Mechanics, Volume 89 (2017), p. 14 | DOI:10.1016/j.ijnonlinmec.2016.11.005
  • Anshul Faye; J.A. Rodríguez-Martínez; K.Y. Volokh Spherical void expansion in rubber-like materials: The stabilizing effects of viscosity and inertia, International Journal of Non-Linear Mechanics, Volume 92 (2017), p. 118 | DOI:10.1016/j.ijnonlinmec.2017.04.005
  • Aditya Kumar; Damian Aranda-Iglesias; Oscar Lopez-Pamies Some remarks on the effects of inertia and viscous dissipation in the onset of cavitation in rubber, Journal of Elasticity, Volume 126 (2017) no. 2, pp. 201-213 | DOI:10.1007/s10659-016-9589-y | Zbl:1355.74017
  • N. Kumaraswamy; Hamed Khatam; Gregory P. Reece; Michelle C. Fingeret; Mia K. Markey; Krishnaswamy Ravi-Chandar Mechanical response of human female breast skin under uniaxial stretching, Journal of the Mechanical Behavior of Biomedical Materials, Volume 74 (2017), p. 164 | DOI:10.1016/j.jmbbm.2017.05.027
  • Victor Lefèvre; Kostas Danas; Oscar Lopez-Pamies A general result for the magnetoelastic response of isotropic suspensions of iron and ferrofluid particles in rubber, with applications to spherical and cylindrical specimens, Journal of the Mechanics and Physics of Solids, Volume 107 (2017), p. 343 | DOI:10.1016/j.jmps.2017.06.017
  • Victor Lefèvre; Oscar Lopez-Pamies Nonlinear electroelastic deformations of dielectric elastomer composites: II — Non-Gaussian elastic dielectrics, Journal of the Mechanics and Physics of Solids, Volume 99 (2017), p. 438 | DOI:10.1016/j.jmps.2016.07.005
  • Matti Schneider Beyond polyconvexity: an existence result for a class of quasiconvex hyperelastic materials, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 6, pp. 2084-2089 | DOI:10.1002/mma.4123 | Zbl:1360.74029
  • D. Aranda-Iglesias; G. Vadillo; J.A. Rodríguez-Martínez; K.Y. Volokh Modeling deformation and failure of elastomers at high strain rates, Mechanics of Materials, Volume 104 (2017), p. 85 | DOI:10.1016/j.mechmat.2016.10.004
  • Michel Destrade; Giuseppe Saccomandi; Ivonne Sgura Methodical fitting for mathematical models of rubber-like materials, Proceedings of the Royal Society of London. A. Mathematical, Physical and Engineering Sciences, Volume 473 (2017) no. 2198, p. 22 (Id/No 20160811) | DOI:10.1098/rspa.2016.0811 | Zbl:1404.74016
  • L. Angela Mihai; Alain Goriely How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity, Proceedings of the Royal Society of London. A. Mathematical, Physical and Engineering Sciences, Volume 473 (2017) no. 2207, p. 33 (Id/No 20170607) | DOI:10.1098/rspa.2017.0607 | Zbl:1404.74018
  • Heng Chi; Cameron Talischi; Oscar Lopez-Pamies; Glaucio H. Paulino A paradigm for higher-order polygonal elements in finite elasticity using a gradient correction scheme, Computer Methods in Applied Mechanics and Engineering, Volume 306 (2016), pp. 216-251 | DOI:10.1016/j.cma.2015.12.025 | Zbl:1436.74065
  • Vu Ngoc Khiêm; Mikhail Itskov Analytical network-averaging of the tube model:, Journal of the Mechanics and Physics of Solids, Volume 95 (2016), p. 254 | DOI:10.1016/j.jmps.2016.05.030
  • Lidan Yu; Tianfu Jin; Zhengnan Yin; Heng Xiao A model for rubberlike elasticity up to failure, Acta Mechanica, Volume 226 (2015) no. 5, pp. 1445-1456 | DOI:10.1007/s00707-014-1262-6 | Zbl:1329.74044
  • Lidan Yu; Tianfu Jin; Zhengnan Yin; Heng Xiao Multi-axial strain-stiffening elastic potentials with energy bounds: explicit approach based on uniaxial data, Applied Mathematics and Mechanics, Volume 36 (2015) no. 7, p. 883 | DOI:10.1007/s10483-015-1955-9
  • Zheng Chang; Hao-Yuan Guo; Bo Li; Xi-Qiao Feng Response to “Comment on ‘Disentangling longitudinal and shear elastic waves by neo-Hookean soft devices’” [Appl. Phys. Lett. 107, 056101 (2015)], Applied Physics Letters, Volume 107 (2015) no. 5 | DOI:10.1063/1.4928393
  • Pavel I. Galich; Stephan Rudykh Comment on “Disentangling longitudinal and shear elastic waves by neo-Hookean soft devices” [Appl. Phys. Lett. 106, 161903 (2015)], Applied Physics Letters, Volume 107 (2015) no. 5 | DOI:10.1063/1.4928392
  • Daniel W. Spring; Glaucio H. Paulino Computational homogenization of the debonding of particle reinforced composites: The role of interphases in interfaces, Computational Materials Science, Volume 109 (2015), p. 209 | DOI:10.1016/j.commatsci.2015.07.012
  • T.G. Ritto; L.C.S. Nunes Bayesian model selection of hyperelastic models for simple and pure shear at large deformations, Computers Structures, Volume 156 (2015), p. 101 | DOI:10.1016/j.compstruc.2015.04.008
  • Heng Chi; Cameron Talischi; Oscar Lopez-Pamies; Glaucio H. Paulino Polygonal finite elements for finite elasticity, International Journal for Numerical Methods in Engineering, Volume 101 (2015) no. 4, pp. 305-328 | DOI:10.1002/nme.4802 | Zbl:1352.74044
  • Zishun Liu; William Toh; Teng Yong Ng Advances in Mechanics of Soft Materials: A Review of Large Deformation Behavior of Hydrogels, International Journal of Applied Mechanics, Volume 07 (2015) no. 05, p. 1530001 | DOI:10.1142/s1758825115300011
  • Cornelius O. Horgan The remarkable Gent constitutive model for hyperelastic materials, International Journal of Non-Linear Mechanics, Volume 68 (2015), p. 9 | DOI:10.1016/j.ijnonlinmec.2014.05.010
  • Dong Hao; Dongxu Li; Yihuan Liao Hyperelasticity, dynamic mechanical property, and rheology of addition‐type silicone rubber (VPDMS cured by PMHS), Journal of Applied Polymer Science, Volume 132 (2015) no. 23 | DOI:10.1002/app.42036
  • A. Mendizabal; I. Aguinaga; E. Sánchez Characterisation and modelling of brain tissue for surgical simulation, Journal of the Mechanical Behavior of Biomedical Materials, Volume 45 (2015), p. 1 | DOI:10.1016/j.jmbbm.2015.01.016
  • Taha Goudarzi; Daniel W. Spring; Glaucio H. Paulino; Oscar Lopez-Pamies Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects, Journal of the Mechanics and Physics of Solids, Volume 80 (2015), p. 37 | DOI:10.1016/j.jmps.2015.04.012
  • D. Jalocha; A. Constantinescu; R. Neviere Prestrain-dependent viscosity of a highly filled elastomer: experiments and modeling, Mechanics of Time-Dependent Materials, Volume 19 (2015) no. 3, p. 243 | DOI:10.1007/s11043-015-9262-z
  • Tianfu Jin; Lidan Yu; Zhengnan Yin; Heng Xiao Bounded elastic potentials for rubberlike materials with strain-stiffening effects, ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik, Volume 95 (2015) no. 11, pp. 1230-1242 | DOI:10.1002/zamm.201400109 | Zbl:1333.74022
  • T. Beda An approach for hyperelastic model-building and parameters estimation a review of constitutive models, European Polymer Journal, Volume 50 (2014), p. 97 | DOI:10.1016/j.eurpolymj.2013.10.006
  • M.R. Mansouri; H. Darijani Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach, International Journal of Solids and Structures, Volume 51 (2014) no. 25-26, p. 4316 | DOI:10.1016/j.ijsolstr.2014.08.018
  • Aaron B. Albrecht; K. Ravi-Chandar High strain rate response of rubber membranes, Journal of the Mechanics and Physics of Solids, Volume 64 (2014), p. 377 | DOI:10.1016/j.jmps.2013.12.001
  • Valentin Chapuis; Ségolène Pélisset; Marylène Raeis‐Barnéoud; Heng‐Yu Li; Christophe Ballif; Laure‐Emmanuelle Perret‐Aebi Compressive‐shear adhesion characterization of polyvinyl‐butyral and ethylene‐vinyl acetate at different curing times before and after exposure to damp‐heat conditions, Progress in Photovoltaics: Research and Applications, Volume 22 (2014) no. 4, p. 405 | DOI:10.1002/pip.2270
  • G. deBotton; R. Bustamante; A. Dorfmann Axisymmetric bifurcations of thick spherical shells under inflation and compression, International Journal of Solids and Structures, Volume 50 (2013) no. 2, p. 403 | DOI:10.1016/j.ijsolstr.2012.10.004
  • Taha Goudarzi; Oscar Lopez-Pamies Numerical Modeling of the Nonlinear Elastic Response of Filled Elastomers via Composite-Sphere Assemblages, Journal of Applied Mechanics, Volume 80 (2013) no. 5 | DOI:10.1115/1.4023497
  • Oscar Lopez-Pamies; Taha Goudarzi; Kostas Danas The nonlinear elastic response of suspensions of rigid inclusions in rubber: II—A simple explicit approximation for finite-concentration suspensions, Journal of the Mechanics and Physics of Solids, Volume 61 (2013) no. 1, p. 19 | DOI:10.1016/j.jmps.2012.08.013
  • Arash Yavari; Alain Goriely Riemann-Cartan geometry of nonlinear dislocation mechanics, Archive for Rational Mechanics and Analysis, Volume 205 (2012) no. 1, pp. 59-118 | DOI:10.1007/s00205-012-0500-0 | Zbl:1281.74006
  • Firozut Tauheed; Somnath Sarangi Mullins effect on incompressible hyperelastic cylindrical tube in finite torsion, International Journal of Mechanics and Materials in Design, Volume 8 (2012) no. 4, p. 393 | DOI:10.1007/s10999-012-9203-9
  • Toshio Nakamura; Oscar Lopez-Pamies A finite element approach to study cavitation instabilities in non-linear elastic solids under general loading conditions, International Journal of Non-Linear Mechanics, Volume 47 (2012) no. 2, p. 331 | DOI:10.1016/j.ijnonlinmec.2011.07.007
  • Oscar Lopez-Pamies; Pedro Ponte Castañeda; Martín I. Idiart Effects of internal pore pressure on closed-cell elastomeric foams, International Journal of Solids and Structures, Volume 49 (2012) no. 19-20, p. 2793 | DOI:10.1016/j.ijsolstr.2012.02.024
  • Oscar Lopez-Pamies; Joaquín Moraleda; Javier Segurado; Javier Llorca On the extremal properties of Hashin's hollow cylinder assemblage in nonlinear elasticity, Journal of Elasticity, Volume 107 (2012) no. 1, pp. 1-10 | DOI:10.1007/s10659-011-9331-8 | Zbl:1331.74058
  • M. Agoras; P. Ponte Castañeda Multi-scale homogenization-based modeling of semi-crystalline polymers, Philosophical Magazine, Volume 92 (2012) no. 8, p. 925 | DOI:10.1080/14786435.2011.637982
  • Jaehyung Ju; Joshua D. Summers Hyperelastic Constitutive Modeling of Hexagonal Honeycombs Subjected to In-Plane Shear Loading, Journal of Engineering Materials and Technology, Volume 133 (2011) no. 1 | DOI:10.1115/1.4002640
  • Oscar Lopez-Pamies; Toshio Nakamura; Martín I. Idiart Cavitation in elastomeric solids. II: Onset-of-cavitation surfaces for neo-Hookean materials, Journal of the Mechanics and Physics of Solids, Volume 59 (2011) no. 8, pp. 1488-1505 | DOI:10.1016/j.jmps.2011.04.016 | Zbl:1270.74026
  • L.C.S. Nunes Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test, Materials Science and Engineering: A, Volume 528 (2011) no. 3, p. 1799 | DOI:10.1016/j.msea.2010.11.025

Cité par 154 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: