Comptes Rendus
A conditionally linearly stable second-order traffic model derived from a Vlasov kinetic description
Comptes Rendus. Mécanique, Volume 338 (2010) no. 9, pp. 529-537.

A new second-order traffic model is derived from a nonlinear Vlasov type equation with a source term. The homogeneous part of the system is proven to be hyperbolic. Using a vehicle speed relaxation source term the full system appears to be conditionally linearly stable with instabilities in the dense traffic region. The stability condition depends on the choice of the source term and the model parameters. Numerical experiments confirm the analysis. For a class of source terms, the system is unconditionally linearly stable but numerical experiments show the appearance of nonlinear instabilities that evolve into stop-and-go waves in the dense region.

Dans cette Note, un modèle de trafic du second ordre est construit à partir d'une description cinétique de type Vlasov. La partie homogène de ce système est hyperbolique. Néanmoins, en utilisant un terme source de relaxation de vitesse, le système complet non homogène s'avère être conditionnellement linéairement stable avec une région d'instabilité localisée dans le régime dense. La condition de stabilité linéaire dépend du choix du terme source et des paramètres ouverts du modèle. Les expériences numériques confirment l'analyse théorique. Pour une certaine classe de termes de source, le système est inconditionnellement linéairement stable ; les expérimentations numériques montrent l'apparition d'instabilités non linéaires qui évoluent en ondes « stop-and-go » dans la région de trafic dense.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2010.07.018
Keywords: Dynamical systems, Traffic model, Vlasov equation, Hyperbolic equation, Linear stability, Stop-and-go wave, Numerical scheme
Mot clés : Systèmes dynamiques, Modèle de trafic, Équation cinétique, Équation hyperbolique, Stabilité linéaire, Stop-and-go, Schéma numérique

Romain Billot 1, 2; Christophe Chalons 2; Florian De Vuyst 2, 3, 4; Nour-Eddin El Faouzi 1; Jacques Sau 5

1 Laboratoire d'ingénierie circulation transports (LICIT), INRETS-ENTPE, 25, avenue François-Mitterrand, case 24, 69675 Bron cedex, France
2 École centrale Paris, laboratoire MAS, grande voie des vignes, 92295 Châtenay-Malabry cedex, France
3 Department of Mechanical Engineering, Energy Conversion Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe-shi, Kyoto 610-0321, Japan
4 École normale supérieure de Cachan, centre de mathématiques de leurs applications, 94235 Cachan cedex, France
5 LMFA UMR 5509, université Lyon 1, 69622 Villeurbanne cedex, France
@article{CRMECA_2010__338_9_529_0,
     author = {Romain Billot and Christophe Chalons and Florian De Vuyst and Nour-Eddin El Faouzi and Jacques Sau},
     title = {A conditionally linearly stable second-order traffic model derived from a {Vlasov} kinetic description},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {529--537},
     publisher = {Elsevier},
     volume = {338},
     number = {9},
     year = {2010},
     doi = {10.1016/j.crme.2010.07.018},
     language = {en},
}
TY  - JOUR
AU  - Romain Billot
AU  - Christophe Chalons
AU  - Florian De Vuyst
AU  - Nour-Eddin El Faouzi
AU  - Jacques Sau
TI  - A conditionally linearly stable second-order traffic model derived from a Vlasov kinetic description
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 529
EP  - 537
VL  - 338
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2010.07.018
LA  - en
ID  - CRMECA_2010__338_9_529_0
ER  - 
%0 Journal Article
%A Romain Billot
%A Christophe Chalons
%A Florian De Vuyst
%A Nour-Eddin El Faouzi
%A Jacques Sau
%T A conditionally linearly stable second-order traffic model derived from a Vlasov kinetic description
%J Comptes Rendus. Mécanique
%D 2010
%P 529-537
%V 338
%N 9
%I Elsevier
%R 10.1016/j.crme.2010.07.018
%G en
%F CRMECA_2010__338_9_529_0
Romain Billot; Christophe Chalons; Florian De Vuyst; Nour-Eddin El Faouzi; Jacques Sau. A conditionally linearly stable second-order traffic model derived from a Vlasov kinetic description. Comptes Rendus. Mécanique, Volume 338 (2010) no. 9, pp. 529-537. doi : 10.1016/j.crme.2010.07.018. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.018/

[1] C.F. Daganzo Requiem for second order fluid approximations of traffic flow, Transp. Res. B, Volume 29 (1995), pp. 277-286

[2] D. Helbing; A. Johansson On the controversy around Daganzo's requiem for and Aw–Rascle's resurrection of second-order traffic flow models, Eur. Phys. J. B, Volume 69 (2009) no. 4, pp. 549-562

[3] A. Aw; M. Rascle Resurrection of “second order” models of traffic flow, SIAM J. Appl. Math., Volume 60 (2000) no. 3, pp. 916-938

[4] F. Berthelin; P. Degond; M. Delitala; M. Rascle A model for the formation and evolution of traffic jams, Arch. Ration. Mech. Anal., Volume 187 (2008), pp. 185-220

[5] F. Berthelin; P. Degond; V. Le Blanc; S. Moutari; M. Rascle; J. Royer A traffic-flow model with constraints for the modelling of traffic jams, Math. Models Methods Appl. Sci. (Suppl.), Volume 18 (2008), pp. 1269-1298

[6] R.M. Colombo A 2×2 hyperbolic traffic flow model. Traffic flow-modelling and simulation, Math. Comput. Modelling, Volume 35 (2002) no. 5–6, pp. 683-688

[7] J.-P. Lebacque; S. Mammar; H. Haj-Salem The Aw–Rascle and Zhang's model: Vacuum problems, existence and regularity of the solutions of the Riemann problem, Transp. Res. B, Volume 41 (2007), pp. 710-721

[8] R. Illner; C. Kirchner; R. Pinnau A derivation of the Aw–Rascle traffic models from the Fokker–Planck type kinetic models, Quart. Appl. Math., Volume 67 (2009), pp. 39-45

[9] M. Delitala Nonlinear models of vehicular traffic flow—new frameworks of the mathematical kinetic theory, C. R. Mecanique, Volume 331 (2003), pp. 817-822

[10] A. Klar; R. Wegener A hierarchy of models for multilane vehicular traffic I: modeling, SIAM J. Appl. Math., Volume 59 (1999) no. 3, pp. 983-1001

[11] P. Degond; M. Delitala Modelling and simulation of vehicular traffic jam formation, Kinet. Relat. Models, Volume 1 (2008), pp. 279-293

[12] M. Delitala; A. Tosin Mathematical modelling of vehicular traffic: A discrete kinetic theory approach, Math. Models Methods Appl. Sci., Volume 17 (2007), pp. 901-932

[13] V. Coscia On a closure of mass conservation equation and stability analysis in the mathematical theory of vehicular traffic flow, C. R. Mecanique, Volume 332 (2004), pp. 585-590

[14] P. Bagnerini; R. Colombo; A. Corli On the role of source terms in continuum traffic flow models, Math. Comput. Modelling, Volume 44 (2006) no. 9–10, pp. 917-930

[15] M. Herty; R. Illner On Stop-and-Go waves in dense traffic, Kinetic and related models, AIMS, Volume 1 (2008) no. 3, pp. 437-452

[16] I. Bonzani; L. Mussone From experiments to hydrodynamic traffic flow models: I—Modelling and parameter identification, Math. Comput. Modelling, Volume 37 (2003), pp. 1435-1442

[17] N. Bellomo; V. Coscia First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow, C. R. Mecanique, Volume 333 (2005) no. 11, pp. 843-851

[18] E. Godlewski; P.-A. Raviart Numerical Approximation of Hyperbolic Systems of Conservation Laws, Appl. Math. Sci., vol. 118, Springer, 1996

Cited by Sources:

Comments - Policy