[Une méthode fréquentielle pour le calcul de stabilité des solutions périodiques des systèmes dynamiques]
Dans cette Note, nous présentons une méthode numérique fréquentielle pour déterminer la stabilité des solutions périodiques d'un système dynamique. La méthode, basée sur la théorie de Floquet et le développement en série de Fourier (méthode de Hill), consiste à extraire les valeurs propres physiques de l'ensemble des valeurs propres numériques du système perturbé étendu dans le domaine fréquentiel. En combinant alors la méthode de l'équilibrage harmonique et la méthode asymptotique numérique avec la précédente méthode de Hill, on obtient un outils de continuation purement fréquentiel où le calcul de la stabilité des solutions suivies est quasiment immédiat. Afin de valider la méthode, nous appliquons la méthode de continuation à un oscillateur de Duffing forcé.
In this Note, we present a harmonic-based numerical method to determine the local stability of periodic solutions of dynamical systems. Based on the Floquet theory and the Fourier series expansion (Hill method), we propose a simple strategy to sort the relevant physical eigenvalues among the expanded numerical spectrum of the linear periodic system governing the perturbed solution. By mixing the harmonic-balance method and asymptotic numerical method continuation technique with the developed Hill method, we obtain a purely-frequency based continuation tool able to compute the stability of the continued periodic solutions in a reduced computation time. To validate the general methodology, we investigate the dynamical behavior of the forced Duffing oscillator with the developed continuation technique.
Accepté le :
Publié le :
Mots-clés : Systèmes dynamiques, Stabilité, Méthode de Hill, Méthode de continuation, Méthode de l'équilibrage harmonique
Arnaud Lazarus 1 ; Olivier Thomas 1
@article{CRMECA_2010__338_9_510_0, author = {Arnaud Lazarus and Olivier Thomas}, title = {A harmonic-based method for computing the stability of periodic solutions of dynamical systems}, journal = {Comptes Rendus. M\'ecanique}, pages = {510--517}, publisher = {Elsevier}, volume = {338}, number = {9}, year = {2010}, doi = {10.1016/j.crme.2010.07.020}, language = {en}, }
TY - JOUR AU - Arnaud Lazarus AU - Olivier Thomas TI - A harmonic-based method for computing the stability of periodic solutions of dynamical systems JO - Comptes Rendus. Mécanique PY - 2010 SP - 510 EP - 517 VL - 338 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2010.07.020 LA - en ID - CRMECA_2010__338_9_510_0 ER -
Arnaud Lazarus; Olivier Thomas. A harmonic-based method for computing the stability of periodic solutions of dynamical systems. Comptes Rendus. Mécanique, Volume 338 (2010) no. 9, pp. 510-517. doi : 10.1016/j.crme.2010.07.020. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.07.020/
[1] Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods, John Wiley & Sons, Inc., 1995
[2] Nonlinear normal modes. Part II: Toward a practical computation using numerical continuation techniques, Mechanical Systems and Signal Processing, Volume 23 (2009), pp. 195-216
[3] On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon, Acta Mathematica, Volume 8 (1886) no. 1, pp. 1-36
[4] On the Hill determinant method, Journal of Physics A: Mathematical and General, Volume 19 (1986), pp. 2903-2906
[5] Computing spectra of linear operators using the Floquet–Fourier–Hill method, Journal of Computational Physics, Volume 219 (2006), pp. 296-321
[6] Analysis of stability and bifurcations of limit cycles in Chua's circuit through the harmonic-balance approach, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Volume 46 (1999), pp. 881-890
[7] Stability and vibration analysis of a complex flexible rotor bearing system, Communications in Nonlinear Science and Numerical Simulation, Volume 13 (2008), pp. 804-821
[8] A. Lazarus, D. Combescure, B. Prabel, A 3D finite element model for the vibration analysis of asymmetric rotating machines, Journal of Sound and Vibration, . | DOI
[9] A high order purely-based harmonic balance formulation for continuation of periodic solutions, Journal of Sound and Vibration, Volume 324 (2009), pp. 243-262
[10] Sur la théorie des équations différentielles, Annales Scientifiques de l'École Normale Supérieure, Volume 8 (1879), pp. 3-132
[11] Ordinary Differential Equations, Society for Industrial and Applied Mathematics, 2002
[12] An Exploration of Chaos, Texts on Computational Mechanics, vol. VII, North-Holland, 1994
[13] Nonlinear Oscillations, Wiley, 1979
[14] Sur les déterminants d'ordre infini, Bulletin de la Société Mathématique de France, Volume 14 (1886), pp. 77-90
[15] Spectral analysis and eigenvalues computation of the harmonic state operators in continuous-time periodic systems, Systems & Control Letters, Volume 53 (2004), pp. 141-155
[16] On the convergence of Hill's method, Mathematics of Computation, Volume 79 (2010), pp. 169-187
[17] The Behavior of Nonlinear Vibrating Systems, vol. 1: Fundamental Concepts and Methods: Applications to Single-Degree-of-Freedom Systems, Kluwer Academic Publishers, 1990
[18] Frequency lock-in is caused by coupled-mode flutter, Journal of Fluids and Structures, Volume 22 (2006), pp. 783-791
- A New Analysis Framework for Solving Multiple Frequencies and Solutions of Nonlinear Piezoelectric Energy Harvesters, Communications in Nonlinear Science and Numerical Simulation, Volume 140 (2025), p. 108433 | DOI:10.1016/j.cnsns.2024.108433
- Understanding, Computing and Identifying the Nonlinear Dynamics of Elastic and Piezoelectric Structures Thanks to Nonlinear Modes, Model Order Reduction for Design, Analysis and Control of Nonlinear Vibratory Systems, Volume 614 (2025), p. 151 | DOI:10.1007/978-3-031-67499-0_4
- Prediction and validation of aeroelastic limit cycle oscillations using harmonic balance methods and Koopman operator, Nonlinear Dynamics (2025) | DOI:10.1007/s11071-025-11065-8
- A New Magnetic Model and a New Analysis Framework for Solving Magnetically Nonlinear Piezoelectric Energy Harvesting Problems, The 5th International Conference on Vibration and Energy Harvesting Applications (VEH 2024) (2025), p. 59 | DOI:10.1007/978-981-96-1191-1_6
- Playability of self-sustained musical instrument models: statistical approaches, Acta Acustica, Volume 8 (2024), p. 74 | DOI:10.1051/aacus/2024075
- Optimal Projection in a Koopman-Based Sorting-Free Hill Method, Advances in Nonlinear Dynamics, Volume I (2024), p. 409 | DOI:10.1007/978-3-031-50631-4_35
- DeHNSSo: The Delft Harmonic Navier-Stokes Solver for nonlinear stability problems with complex geometric features, Computer Physics Communications, Volume 302 (2024), p. 109250 | DOI:10.1016/j.cpc.2024.109250
- Control of isolated response curves through optimization of codimension-1 singularities, Computers Structures, Volume 299 (2024), p. 107394 | DOI:10.1016/j.compstruc.2024.107394
- Linear Time-Periodic theory-based novel stability analysis method for voltage-source converter under unbalanced grid conditions, International Journal of Electrical Power Energy Systems, Volume 161 (2024), p. 110197 | DOI:10.1016/j.ijepes.2024.110197
- Nonlinear analysis and vibro-impact characteristics of a shaft-bearing assembly, International Journal of Non-Linear Mechanics, Volume 159 (2024), p. 104618 | DOI:10.1016/j.ijnonlinmec.2023.104618
- Koopman–Hill stability computation of periodic orbits in polynomial dynamical systems using a real-valued quadratic harmonic balance formulation, International Journal of Non-Linear Mechanics, Volume 167 (2024), p. 104894 | DOI:10.1016/j.ijnonlinmec.2024.104894
- Harmonic balance for differential constitutive models under oscillatory shear, Physics of Fluids, Volume 36 (2024) no. 5 | DOI:10.1063/5.0207942
- Asymptotic numerical method for hyperelasticity and elastoplasticity: a review, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 480 (2024) no. 2285 | DOI:10.1098/rspa.2023.0714
- Friction damping for turbomachinery: A comprehensive review of modelling, design strategies, and testing capabilities, Progress in Aerospace Sciences, Volume 147 (2024), p. 101018 | DOI:10.1016/j.paerosci.2024.101018
- Event-driven Gauss quadrature and stability analysis for fast alternating frequency–time harmonic balance of non-smooth systems, Communications in Nonlinear Science and Numerical Simulation, Volume 120 (2023), p. 107189 | DOI:10.1016/j.cnsns.2023.107189
- Numerical and Experimental Stability Investigation of a Parametrically Excited Cantilever Beam at Combination Parametric Resonance, Experimental Mechanics, Volume 63 (2023) no. 1, p. 177 | DOI:10.1007/s11340-022-00903-0
- Robust design of vibro-impacting geared systems with uncertain tooth profile modifications via bifurcation tracking, International Journal of Non-Linear Mechanics, Volume 149 (2023), p. 104336 | DOI:10.1016/j.ijnonlinmec.2022.104336
- Evaluating route to impact convergence of the harmonic balance method for piecewise-smooth systems, International Journal of Non-Linear Mechanics, Volume 152 (2023), p. 104398 | DOI:10.1016/j.ijnonlinmec.2023.104398
- Sensitivity analysis of chaotic systems using a frequency-domain shadowing approach, Journal of Computational Physics, Volume 474 (2023), p. 111757 | DOI:10.1016/j.jcp.2022.111757
- A Python Implementation of a Robust Multi-Harmonic Balance With Numerical Continuation and Automatic Differentiation for Structural Dynamics, Journal of Computational and Nonlinear Dynamics, Volume 18 (2023) no. 7 | DOI:10.1115/1.4062424
- Performance Analysis of Frictional Inerter-Based Vibration Isolator, Journal of Vibration Engineering Technologies, Volume 11 (2023) no. 6, p. 2793 | DOI:10.1007/s42417-023-01051-y
- A variational modification of the Harmonic Balance method to obtain approximate Floquet exponents, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 8, p. 8956 | DOI:10.1002/mma.9029
- Are Chebyshev-based stability analysis and Urabe’s error bound useful features for Harmonic Balance?, Mechanical Systems and Signal Processing, Volume 194 (2023), p. 110265 | DOI:10.1016/j.ymssp.2023.110265
- Dynamics of a Wind Turbine with Two Moving Masses Using the Galloping Effect, Mechanics of Solids, Volume 58 (2023) no. 2, p. 426 | DOI:10.3103/s0025654422600507
- Embedding nonlinear systems with two or more harmonic phase terms near the Hopf–Hopf bifurcation, Nonlinear Dynamics, Volume 111 (2023) no. 2, p. 1537 | DOI:10.1007/s11071-022-07906-5
- Nonlinear dynamics, bifurcations, and multi-stability in a vibro-impact system with geometric and multi-segmented freeplay nonlinearities, Nonlinear Dynamics, Volume 111 (2023) no. 20, p. 18655 | DOI:10.1007/s11071-023-08823-x
- Sorting-free Hill-based stability analysis of periodic solutions through Koopman analysis, Nonlinear Dynamics, Volume 111 (2023) no. 9, p. 8439 | DOI:10.1007/s11071-023-08247-7
- Stability and Convergence Analysis of the Harmonic Balance Method for a Duffing Oscillator with Free Play Nonlinearity, Nonlinear Structures Systems, Volume 1 (2023), p. 249 | DOI:10.1007/978-3-031-04086-3_36
- Dynamics of a Wind Turbine with Two Moving Masses Using the Galloping Effect, Известия Российской академии наук. Механика твердого тела (2023) no. 2, p. 55 | DOI:10.31857/s0572329922100117
- Parameter identification of a physical model of brass instruments by constrained continuation, Acta Acustica, Volume 6 (2022), p. 9 | DOI:10.1051/aacus/2022004
- An Improved Tensorial Implementation of the Incremental Harmonic Balance Method for Frequency-Domain Stability Analysis, Advances in Nonlinear Dynamics (2022), p. 443 | DOI:10.1007/978-3-030-81162-4_39
- Resonant phase lags of a Duffing oscillator, International Journal of Non-Linear Mechanics, Volume 146 (2022), p. 104150 | DOI:10.1016/j.ijnonlinmec.2022.104150
- Identification and reconstruction of high-frequency fluctuations evolving on a low-frequency periodic limit cycle: application to turbulent cylinder flow, Journal of Fluid Mechanics, Volume 942 (2022) | DOI:10.1017/jfm.2022.376
- Effect of gear topology discontinuities on the nonlinear dynamic response of a multi-degree-of-freedom gear train, Journal of Sound and Vibration, Volume 516 (2022), p. 116495 | DOI:10.1016/j.jsv.2021.116495
- Stability analysis of periodic solutions computed for blade-tip/casing contact problems, Journal of Sound and Vibration, Volume 538 (2022), p. 117219 | DOI:10.1016/j.jsv.2022.117219
- A robust and efficient stability analysis of periodic solutions based on harmonic balance method and Floquet-Hill formulation, Mechanical Systems and Signal Processing, Volume 173 (2022), p. 109057 | DOI:10.1016/j.ymssp.2022.109057
- Topological invariant and anomalous edge modes of strongly nonlinear systems, Nature Communications, Volume 13 (2022) no. 1 | DOI:10.1038/s41467-022-31084-y
- Bifurcation tracking of geared systems with parameter-dependent internal excitation, Nonlinear Dynamics, Volume 107 (2022) no. 1, p. 413 | DOI:10.1007/s11071-021-07018-6
- Asymptotic stability of quasi-periodic orbits, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 478 (2022) no. 2259 | DOI:10.1098/rspa.2021.0787
- Existence and location of internal resonance of two-mode nonlinear conservative oscillators, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 478 (2022) no. 2260 | DOI:10.1098/rspa.2021.0659
- Harmonic balance analysis of magnetically coupled two-degree-of-freedom bistable energy harvesters, Scientific Reports, Volume 12 (2022) no. 1 | DOI:10.1038/s41598-022-10061-x
- Multistability of saxophone oscillation regimes and its influence on sound production, Acta Acustica, Volume 5 (2021), p. 33 | DOI:10.1051/aacus/2021026
- Experimental study on influence of wall acoustic materials of 3D cavity for targeted energy transfer of a nonlinear membrane absorber, Applied Acoustics, Volume 184 (2021), p. 108342 | DOI:10.1016/j.apacoust.2021.108342
- Computation of axisymmetric nonlinear low-frequency resonances of hyperelastic thin-walled cylindrical shells, Applied Mathematical Modelling, Volume 94 (2021), p. 332 | DOI:10.1016/j.apm.2021.01.027
- Dynamics of piezoelectric structures with geometric nonlinearities: A non-intrusive reduced order modelling strategy, Computers Structures, Volume 253 (2021), p. 106575 | DOI:10.1016/j.compstruc.2021.106575
- Reduced order models for geometrically nonlinear structures: Assessment of implicit condensation in comparison with invariant manifold approach, European Journal of Mechanics - A/Solids, Volume 86 (2021), p. 104165 | DOI:10.1016/j.euromechsol.2020.104165
- A forced response-based method to track instability of rotating systems, European Journal of Mechanics - A/Solids, Volume 90 (2021), p. 104319 | DOI:10.1016/j.euromechsol.2021.104319
- Linear Time-Periodic Theory-Based Modeling and Stability Analysis of Voltage-Source Converters, IEEE Journal of Emerging and Selected Topics in Power Electronics, Volume 9 (2021) no. 3, p. 3517 | DOI:10.1109/jestpe.2020.3003379
- Modeling and Analysis of SOGI-PLL/FLL-Based Synchronization Units: Stability Impacts of Different Frequency-Feedback Paths, IEEE Transactions on Energy Conversion, Volume 36 (2021) no. 3, p. 2047 | DOI:10.1109/tec.2020.3041797
- Adjoint-based sensitivity analysis of periodic orbits by the Fourier–Galerkin method, Journal of Computational Physics, Volume 440 (2021), p. 110403 | DOI:10.1016/j.jcp.2021.110403
- Trained Harmonic Balance Method for Parametrically Excited Jeffcott Rotor Analysis, Journal of Computational and Nonlinear Dynamics, Volume 16 (2021) no. 1 | DOI:10.1115/1.4048578
- Nonlinear input/output analysis: application to boundary layer transition, Journal of Fluid Mechanics, Volume 911 (2021) | DOI:10.1017/jfm.2020.982
- Eigen and temporal characteristics of multi-frequency parametrically-excited rotor-oscillator systems, Journal of Sound and Vibration, Volume 493 (2021), p. 115824 | DOI:10.1016/j.jsv.2020.115824
- Comparison of nonlinear mappings for reduced-order modelling of vibrating structures: normal form theory and quadratic manifold method with modal derivatives, Nonlinear Dynamics, Volume 103 (2021) no. 4, p. 3335 | DOI:10.1007/s11071-020-05813-1
- Stability of forced–damped response in mechanical systems from a Melnikov analysis, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 30 (2020) no. 8 | DOI:10.1063/5.0012480
- The extended periodic motion concept for fast limit cycle detection of self-excited systems, Computers Structures, Volume 227 (2020), p. 106139 | DOI:10.1016/j.compstruc.2019.106139
- Analysis of Strongly Nonlinear Systems by Using HBM-AFT Method and Its Comparison with the Five-Order Runge–Kutta Method: Application to Duffing Oscillator and Disc Brake Model, International Journal of Applied and Computational Mathematics, Volume 6 (2020) no. 2 | DOI:10.1007/s40819-020-0803-z
- A purely frequency based Floquet-Hill formulation for the efficient stability computation of periodic solutions of ordinary differential systems, Journal of Computational Physics, Volume 416 (2020), p. 109477 | DOI:10.1016/j.jcp.2020.109477
- Nonlinear Response of PZT-Actuated Resonant Micromirrors, Journal of Microelectromechanical Systems, Volume 29 (2020) no. 6, p. 1421 | DOI:10.1109/jmems.2020.3022557
- Backbone curves of coupled cubic oscillators in one-to-one internal resonance: bifurcation scenario, measurements and parameter identification, Meccanica, Volume 55 (2020) no. 3, p. 481 | DOI:10.1007/s11012-020-01132-2
- Global detection of detached periodic solution branches of friction-damped mechanical systems, Nonlinear Dynamics, Volume 99 (2020) no. 3, p. 1841 | DOI:10.1007/s11071-019-05425-4
- Multiple two-step oscillation regimes produced by the alto saxophone, The Journal of the Acoustical Society of America, Volume 147 (2020) no. 4, p. 2406 | DOI:10.1121/10.0001109
- Numerical continuation of a physical model of brass instruments: Application to trumpet comparisons, The Journal of the Acoustical Society of America, Volume 148 (2020) no. 2, p. 748 | DOI:10.1121/10.0001603
- Application to Mechanical Systems, Harmonic Balance for Nonlinear Vibration Problems (2019), p. 47 | DOI:10.1007/978-3-030-14023-6_3
- Nonlinear primary and super-harmonic resonances of functionally graded carbon nanotube reinforced composite beams, International Journal of Mechanical Sciences, Volume 153-154 (2019), p. 321 | DOI:10.1016/j.ijmecsci.2019.02.015
- Nonlinear polarization coupling in freestanding nanowire/nanotube resonators, Journal of Applied Physics, Volume 125 (2019) no. 4 | DOI:10.1063/1.5053955
- A Method for Parametric Analysis of Stability Boundaries for Nonlinear Periodic Vibrations of Structures With Contact Interfaces, Journal of Engineering for Gas Turbines and Power, Volume 141 (2019) no. 3 | DOI:10.1115/1.4040850
- Parametric instability of anisotropic rotor-bearing systems with a transverse crack, Journal of Sound and Vibration, Volume 443 (2019), p. 253 | DOI:10.1016/j.jsv.2018.11.052
- Numerical antiresonance continuation of structural systems, Mechanical Systems and Signal Processing, Volume 116 (2019), p. 963 | DOI:10.1016/j.ymssp.2018.07.005
- Continuation of periodic solutions for systems with fractional derivatives, Nonlinear Dynamics, Volume 95 (2019) no. 1, p. 479 | DOI:10.1007/s11071-018-4577-3
- A Taylor series-based continuation method for solutions of dynamical systems, Nonlinear Dynamics, Volume 98 (2019) no. 4, p. 2827 | DOI:10.1007/s11071-019-04989-5
- The Reduced Space Shooting Method for Calculating the Peak Periodic Solutions of Nonlinear Systems, Journal of Computational and Nonlinear Dynamics, Volume 13 (2018) no. 6 | DOI:10.1115/1.4039682
- Frequency-Domain Sensitivity Analysis of Stability of Nonlinear Vibrations for High-Fidelity Models of Jointed Structures, Journal of Engineering for Gas Turbines and Power, Volume 140 (2018) no. 1 | DOI:10.1115/1.4037708
- Modal and stability analysis of structures in periodic elastic states: application to the Ziegler column, Nonlinear Dynamics, Volume 91 (2018) no. 2, p. 1349 | DOI:10.1007/s11071-017-3949-4
- Vibration Prediction of Bladed Disks Coupled by Friction Joints, Archives of Computational Methods in Engineering, Volume 24 (2017) no. 3, p. 589 | DOI:10.1007/s11831-016-9183-2
- Stability Analysis of Multiharmonic Nonlinear Vibrations for Large Models of Gas Turbine Engine Structures With Friction and Gaps, Journal of Engineering for Gas Turbines and Power, Volume 139 (2017) no. 2 | DOI:10.1115/1.4034353
- Uncertainty propagation for nonlinear vibrations: A non-intrusive approach, Journal of Sound and Vibration, Volume 389 (2017), p. 309 | DOI:10.1016/j.jsv.2016.09.020
- Regularized friction and continuation: Comparison with Coulomb's law, Journal of Sound and Vibration, Volume 389 (2017), p. 350 | DOI:10.1016/j.jsv.2016.11.002
- Continuation of quasi-periodic solutions with two-frequency Harmonic Balance Method, Journal of Sound and Vibration, Volume 394 (2017), p. 434 | DOI:10.1016/j.jsv.2016.12.013
- Parametric system identification of resonant micro/nanosystems operating in a nonlinear response regime, Mechanical Systems and Signal Processing, Volume 84 (2017), p. 241 | DOI:10.1016/j.ymssp.2016.06.003
- Optimization of hardening/softening behavior of plane frame structures using nonlinear normal modes, Computers Structures, Volume 164 (2016), p. 63 | DOI:10.1016/j.compstruc.2015.11.001
- Numerical computation of nonlinear normal modes in mechanical engineering, Journal of Sound and Vibration, Volume 364 (2016), p. 177 | DOI:10.1016/j.jsv.2015.09.033
- Continuation techniques for analysis of whole aeroengine dynamics with imperfect bifurcations and isolated solutions, Nonlinear Dynamics, Volume 86 (2016) no. 3, p. 1897 | DOI:10.1007/s11071-016-3003-y
- Tracking of Backbone Curves of Nonlinear Systems Using Phase-Locked-Loops, Nonlinear Dynamics, Volume 1 (2016), p. 107 | DOI:10.1007/978-3-319-29739-2_11
- The Harmonic Balance Method for Bifurcation Analysis of Nonlinear Mechanical Systems, Nonlinear Dynamics, Volume 1 (2016), p. 65 | DOI:10.1007/978-3-319-15221-9_5
- Modal dynamics of structures with bladed isotropic rotors and its complexity for two-bladed rotors, Wind Energy Science, Volume 1 (2016) no. 2, p. 271 | DOI:10.5194/wes-1-271-2016
- The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems, Computer Methods in Applied Mechanics and Engineering, Volume 296 (2015), p. 18 | DOI:10.1016/j.cma.2015.07.017
- Nonlinear modal analysis of nonconservative systems: Extension of the periodic motion concept, Computers Structures, Volume 154 (2015), p. 59 | DOI:10.1016/j.compstruc.2015.03.008
- A 3D finite element-based model order reduction method for parametric resonance and whirling analysis of anisotropic rotor-bearing systems, Journal of Sound and Vibration, Volume 359 (2015), p. 116 | DOI:10.1016/j.jsv.2015.08.027
- Optimization analysis of Duffing oscillator with fractional derivatives, Nonlinear Dynamics, Volume 79 (2015) no. 2, p. 1311 | DOI:10.1007/s11071-014-1744-z
- Analytical periodic solution and stability assessment of 1 DOF parametric systems with time varying stiffness, Applied Mathematics and Computation, Volume 243 (2014), p. 138 | DOI:10.1016/j.amc.2014.05.089
- Theoretical and numerical study of targeted energy transfer inside an acoustic cavity by a non-linear membrane absorber, International Journal of Non-Linear Mechanics, Volume 64 (2014), p. 85 | DOI:10.1016/j.ijnonlinmec.2014.04.008
- Effect of non-linear damping on the structural dynamics of flapping beams, International Journal of Non-Linear Mechanics, Volume 65 (2014), p. 148 | DOI:10.1016/j.ijnonlinmec.2014.05.005
- On the computation of the slow dynamics of nonlinear modes of mechanical systems, Mechanical Systems and Signal Processing, Volume 42 (2014) no. 1-2, p. 71 | DOI:10.1016/j.ymssp.2013.08.031
- Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances, Nonlinear Dynamics, Volume 75 (2014) no. 1-2, p. 175 | DOI:10.1007/s11071-013-1057-7
- The Harmonic Balance Method for Advanced Analysis and Design of Nonlinear Mechanical Systems, Nonlinear Dynamics, Volume 2 (2014), p. 19 | DOI:10.1007/978-3-319-04522-1_3
- A Framework for the Computational Dynamic Analysis of Coupled Structures Using Nonlinear Modes, Nonlinear Dynamics, Volume 2 (2014), p. 45 | DOI:10.1007/978-3-319-04522-1_5
- Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities, Applied Physics Letters, Volume 102 (2013) no. 16 | DOI:10.1063/1.4802786
- Non-linear vibrations of beams with non-symmetrical cross sections, International Journal of Non-Linear Mechanics, Volume 55 (2013), p. 153 | DOI:10.1016/j.ijnonlinmec.2013.04.015
- Constrained Optimization Shooting Method for Predicting the Periodic Solutions of Nonlinear System, Journal of Computational and Nonlinear Dynamics, Volume 8 (2013) no. 4 | DOI:10.1115/1.4023916
- Maximization of the vibration amplitude and bifurcation analysis of nonlinear systems using the constrained optimization shooting method, Journal of Sound and Vibration, Volume 332 (2013) no. 16, p. 3781 | DOI:10.1016/j.jsv.2013.02.034
- A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of non-polynomial nonlinearities, Journal of Sound and Vibration, Volume 332 (2013) no. 4, p. 968 | DOI:10.1016/j.jsv.2012.09.033
- Continuation of equilibria and stability of slender elastic rods using an asymptotic numerical method, Journal of the Mechanics and Physics of Solids, Volume 61 (2013) no. 8, p. 1712 | DOI:10.1016/j.jmps.2013.04.002
- A new method for predicting the maximum vibration amplitude of periodic solution of non-linear system, Nonlinear Dynamics, Volume 71 (2013) no. 3, p. 569 | DOI:10.1007/s11071-012-0682-x
- A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics, Nonlinear Dynamics, Volume 72 (2013) no. 3, p. 671 | DOI:10.1007/s11071-012-0744-0
- Nonlinear forced vibrations of rotating anisotropic beams, Nonlinear Dynamics, Volume 74 (2013) no. 4, p. 1281 | DOI:10.1007/s11071-013-1040-3
- Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS, Finite Elements in Analysis and Design, Volume 49 (2012) no. 1, p. 35 | DOI:10.1016/j.finel.2011.08.019
- Passive control of resonances by nonlinear absorbers, MATEC Web of Conferences, Volume 1 (2012), p. 05006 | DOI:10.1051/matecconf/20120105006
- An upper bound for validity limits of asymptotic analytical approaches based on normal form theory, Nonlinear Dynamics, Volume 70 (2012) no. 3, p. 1931 | DOI:10.1007/s11071-012-0584-y
- Global and bifurcation analysis of a structure with cyclic symmetry, International Journal of Non-Linear Mechanics, Volume 46 (2011) no. 5, p. 727 | DOI:10.1016/j.ijnonlinmec.2011.02.005
- Stability of nonlinear periodic vibrations of 3D beams, Nonlinear Dynamics, Volume 66 (2011) no. 3, p. 335 | DOI:10.1007/s11071-011-0150-z
Cité par 111 documents. Sources : Crossref
Commentaires - Politique