Comptes Rendus
Evolution of the micromechanical properties of impacted granular materials
[Evolution des propriétés micro-mécaniques de matériaux granulaires sous impact]
Comptes Rendus. Mécanique, Volume 338 (2010) no. 10-11, pp. 639-647.

L'impact d'un projectile sur un matériau granulaire entraîne d'importants changements des propriétés micro-mécaniques du matériau impacté. Ces changements sont étudiés à l'aide d'un modèle d'impact basé sur la Méthode des Eléments Discrets. Les simulations mettent en évidence que l'impact conduit tout d'abord à une propagation d'énergie du point d'impact vers les limites de l'échantillon impacté le long des chaînes de forces existantes. Cette propagation d'énergie conduit à la destruction des réseaux de forces existants et à l'augmentation significative de l'énergie cinétique en tout point de l'échantillon. Durant la longue phase de retour à l'équilibre suivant la propagation d'énergie, l'énergie cinétique est dissipée par frottement. Les mouvements des particules et les nombreuses ouvertures de contacts empêchent tout d'abord la formation de chaînes de forces stables. Dans un second temps, les ouvertures de contact cessent, ce qui permet la formation de nouveaux réseaux de forces stables et, par conséquent, le retour à l'équilibre de l'échantillon.

The impact of a projectile on a granular material induces important changes in the micromechanical properties of the impacted material. These changes are studied using a Discrete Element Method model of the impact. The numerical results show that the impact first entails an energy propagation from the impact point to the limit of the sample through the existing force chains. A significant kinetic energy and a total breakage of the existing contact force chains are the main consequences of the energy propagation. During the long recovery balance phase observed after the energy propagation phase, frictional processes cause the kinetic energy dissipation. The motions of the particles and the numerous contact openings first prevent the formation of stable force chains. However, for long durations after the beginning of the impact, contact openings stop. The balance recovery phase therefore finally results in the creation of new stable contact force networks.

Publié le :
DOI : 10.1016/j.crme.2010.09.007
Keywords: Granular media, Impact, Discrete Element Method, Force networks
Mot clés : Milieux granulaires, Impact, Méthode des Eléments Discrets, Réseaux de forces

Franck Bourrier 1 ; François Nicot 1 ; Felix Darve 2

1 Cemagref, UR EMGR, 38402 St-Martin d'Hères cedex, France
2 L3S-R, UMR5521, INPG-UJF-CNRS, DU Grenoble Universités, 38041 Grenoble cedex 9, France
@article{CRMECA_2010__338_10-11_639_0,
     author = {Franck Bourrier and Fran\c{c}ois Nicot and Felix Darve},
     title = {Evolution of the micromechanical properties of impacted granular materials},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {639--647},
     publisher = {Elsevier},
     volume = {338},
     number = {10-11},
     year = {2010},
     doi = {10.1016/j.crme.2010.09.007},
     language = {en},
}
TY  - JOUR
AU  - Franck Bourrier
AU  - François Nicot
AU  - Felix Darve
TI  - Evolution of the micromechanical properties of impacted granular materials
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 639
EP  - 647
VL  - 338
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crme.2010.09.007
LA  - en
ID  - CRMECA_2010__338_10-11_639_0
ER  - 
%0 Journal Article
%A Franck Bourrier
%A François Nicot
%A Felix Darve
%T Evolution of the micromechanical properties of impacted granular materials
%J Comptes Rendus. Mécanique
%D 2010
%P 639-647
%V 338
%N 10-11
%I Elsevier
%R 10.1016/j.crme.2010.09.007
%G en
%F CRMECA_2010__338_10-11_639_0
Franck Bourrier; François Nicot; Felix Darve. Evolution of the micromechanical properties of impacted granular materials. Comptes Rendus. Mécanique, Volume 338 (2010) no. 10-11, pp. 639-647. doi : 10.1016/j.crme.2010.09.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.09.007/

[1] W. Goldsmith Impact: The Theory and Physical Behaviour of Colliding Solids, Edward Arnold (Publishers) Ltd., London, 1960

[2] M. Frémond Rigid bodies collisions, Phys. Lett. A, Volume 204 (1995), pp. 33-41

[3] C. Thornton; Z. Ning A theoretical model for the stick/bounce behaviour of adhesive, elastic–plastic spheres, Powder Technol., Volume 99 (1998), pp. 154-162

[4] W.J. Stronge Impacts Mechanics, Cambridge University Press, Cambridge, 2000

[5] K. Tanaka; M. Nishida; T. Kunimochi; T. Takagi Discrete element simulation and experiment for dynamic response of two-dimensional granular matter to the impact of a spherical impacting particle, Powder Technol., Volume 124 (2002), pp. 160-173

[6] M.P. Ciamarra; A.H. Lara; A.T. Lee; D.I. Goldman; I. Vishik; H.L. Swinney Dynamics of drag and force distributions for projectile impact in a granular medium, Phys. Rev. Lett., Volume 92 (2004) no. 194301, pp. 1-4

[7] L. Oger; M. Ammi; A. Valance; D. Beladjine Discrete element method to study the collision of one rapid sphere on 2D and 3D packings, Eur. Phys. J. E, Volume 17 (2005), pp. 467-476

[8] J. Crassous; D. Beladjine; A. Valance Impact of a projectile on a granular medium described by a collision model, Phys. Rev. Lett., Volume 99 (2007) no. 24, p. 248001

[9] M. Toiya; J. Hettinga; W. Losert 3D imaging of particle motion during penetrometer testing. From microscopic tomacroscopic soil mechanics, Granular Matter, Volume 9 (2007), pp. 323-329

[10] S. Deboeuf; P. Gondret; M. Rabaud Dynamics of grain ejection by sphere impact on a granular bed, Phys. Rev. E, Volume 79 (2009) no. 4, p. 041306

[11] F. Bourrier; F. Nicot; F. Darve Physical processes within a 2D granular layer during an impact, Granular Matter, Volume 10 (2008), pp. 415-437

[12] Itasca PFC2D – Theory and Background, Itasca, 1999

[13] P.A. Cundall; O.D.L. Strack A discrete numerical model for granular assemblies, Geotechnique, Volume 29 (1979) no. 1, pp. 47-65

[14] P.A. Cundall Computer simulations of dense spheres assemblies (B.V.M. Satake; J.T. Jenkins, eds.), Micromechanics of Granular Materials, Elsevier Science Publisher, 1988, pp. 113-123

[15] R.D. Mindlin; H. Deresiewicz Elastic spheres in contact under varying oblique forces, J. Appl. Mech., Volume 20 (1953), pp. 327-344

[16] R.E. Goodman Introduction to Rock Mechanics, PWS Publishing Company, 1980

[17] L.K.A. Dorren; F. Berger; U.S. Putters Real-size experiments and 3D simulation of rockfall on forested and non-forested slopes, Nat. Hazards Earth Syst. Sci., Volume 6 (2006) no. 1, pp. 145-153

[18] B. Cambou Micromechanics of Granular Materials (B. Cambou; M. Jean, eds.), Wiley and Sons, 2001

[19] F. Radjai; D.E. Wolf; M. Jean; J.-J. Moreau Bimodal character of stress transmission in granular packings, Phys. Rev. Lett., Volume 80 (1998), pp. 61-64

[20] C. Coste; E. Falcon; S. Fauve Solitary waves in a chain of beads under Hertz contact, Phys. Rev. E, Volume 56 (1997) no. 5, pp. 6104-6117

[21] C.S. Campbell A problem related to the stability of force chains, Granular Matter, Volume 5 (2003), pp. 129-134

[22] S. Job; F. Melo; A. Sokolow; S. Sen Solitary wave trains in granular chains: experiments, theory and simulations, Granular Matter, Volume 10 (2007), pp. 13-20

Cité par Sources :

Commentaires - Politique