Comptes Rendus
Evolution of the micromechanical properties of impacted granular materials
[Evolution des propriétés micro-mécaniques de matériaux granulaires sous impact]
Comptes Rendus. Mécanique, Micromechanics of granular materials, Volume 338 (2010) no. 10-11, pp. 639-647.

L'impact d'un projectile sur un matériau granulaire entraîne d'importants changements des propriétés micro-mécaniques du matériau impacté. Ces changements sont étudiés à l'aide d'un modèle d'impact basé sur la Méthode des Eléments Discrets. Les simulations mettent en évidence que l'impact conduit tout d'abord à une propagation d'énergie du point d'impact vers les limites de l'échantillon impacté le long des chaînes de forces existantes. Cette propagation d'énergie conduit à la destruction des réseaux de forces existants et à l'augmentation significative de l'énergie cinétique en tout point de l'échantillon. Durant la longue phase de retour à l'équilibre suivant la propagation d'énergie, l'énergie cinétique est dissipée par frottement. Les mouvements des particules et les nombreuses ouvertures de contacts empêchent tout d'abord la formation de chaînes de forces stables. Dans un second temps, les ouvertures de contact cessent, ce qui permet la formation de nouveaux réseaux de forces stables et, par conséquent, le retour à l'équilibre de l'échantillon.

The impact of a projectile on a granular material induces important changes in the micromechanical properties of the impacted material. These changes are studied using a Discrete Element Method model of the impact. The numerical results show that the impact first entails an energy propagation from the impact point to the limit of the sample through the existing force chains. A significant kinetic energy and a total breakage of the existing contact force chains are the main consequences of the energy propagation. During the long recovery balance phase observed after the energy propagation phase, frictional processes cause the kinetic energy dissipation. The motions of the particles and the numerous contact openings first prevent the formation of stable force chains. However, for long durations after the beginning of the impact, contact openings stop. The balance recovery phase therefore finally results in the creation of new stable contact force networks.

Publié le :
DOI : 10.1016/j.crme.2010.09.007
Keywords: Granular media, Impact, Discrete Element Method, Force networks
Mots-clés : Milieux granulaires, Impact, Méthode des Eléments Discrets, Réseaux de forces

Franck Bourrier 1 ; François Nicot 1 ; Felix Darve 2

1 Cemagref, UR EMGR, 38402 St-Martin d'Hères cedex, France
2 L3S-R, UMR5521, INPG-UJF-CNRS, DU Grenoble Universités, 38041 Grenoble cedex 9, France
@article{CRMECA_2010__338_10-11_639_0,
     author = {Franck Bourrier and Fran\c{c}ois Nicot and Felix Darve},
     title = {Evolution of the micromechanical properties of impacted granular materials},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {639--647},
     publisher = {Elsevier},
     volume = {338},
     number = {10-11},
     year = {2010},
     doi = {10.1016/j.crme.2010.09.007},
     language = {en},
}
TY  - JOUR
AU  - Franck Bourrier
AU  - François Nicot
AU  - Felix Darve
TI  - Evolution of the micromechanical properties of impacted granular materials
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 639
EP  - 647
VL  - 338
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crme.2010.09.007
LA  - en
ID  - CRMECA_2010__338_10-11_639_0
ER  - 
%0 Journal Article
%A Franck Bourrier
%A François Nicot
%A Felix Darve
%T Evolution of the micromechanical properties of impacted granular materials
%J Comptes Rendus. Mécanique
%D 2010
%P 639-647
%V 338
%N 10-11
%I Elsevier
%R 10.1016/j.crme.2010.09.007
%G en
%F CRMECA_2010__338_10-11_639_0
Franck Bourrier; François Nicot; Felix Darve. Evolution of the micromechanical properties of impacted granular materials. Comptes Rendus. Mécanique, Micromechanics of granular materials, Volume 338 (2010) no. 10-11, pp. 639-647. doi : 10.1016/j.crme.2010.09.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.09.007/

[1] W. Goldsmith Impact: The Theory and Physical Behaviour of Colliding Solids, Edward Arnold (Publishers) Ltd., London, 1960

[2] M. Frémond Rigid bodies collisions, Phys. Lett. A, Volume 204 (1995), pp. 33-41

[3] C. Thornton; Z. Ning A theoretical model for the stick/bounce behaviour of adhesive, elastic–plastic spheres, Powder Technol., Volume 99 (1998), pp. 154-162

[4] W.J. Stronge Impacts Mechanics, Cambridge University Press, Cambridge, 2000

[5] K. Tanaka; M. Nishida; T. Kunimochi; T. Takagi Discrete element simulation and experiment for dynamic response of two-dimensional granular matter to the impact of a spherical impacting particle, Powder Technol., Volume 124 (2002), pp. 160-173

[6] M.P. Ciamarra; A.H. Lara; A.T. Lee; D.I. Goldman; I. Vishik; H.L. Swinney Dynamics of drag and force distributions for projectile impact in a granular medium, Phys. Rev. Lett., Volume 92 (2004) no. 194301, pp. 1-4

[7] L. Oger; M. Ammi; A. Valance; D. Beladjine Discrete element method to study the collision of one rapid sphere on 2D and 3D packings, Eur. Phys. J. E, Volume 17 (2005), pp. 467-476

[8] J. Crassous; D. Beladjine; A. Valance Impact of a projectile on a granular medium described by a collision model, Phys. Rev. Lett., Volume 99 (2007) no. 24, p. 248001

[9] M. Toiya; J. Hettinga; W. Losert 3D imaging of particle motion during penetrometer testing. From microscopic tomacroscopic soil mechanics, Granular Matter, Volume 9 (2007), pp. 323-329

[10] S. Deboeuf; P. Gondret; M. Rabaud Dynamics of grain ejection by sphere impact on a granular bed, Phys. Rev. E, Volume 79 (2009) no. 4, p. 041306

[11] F. Bourrier; F. Nicot; F. Darve Physical processes within a 2D granular layer during an impact, Granular Matter, Volume 10 (2008), pp. 415-437

[12] Itasca PFC2D – Theory and Background, Itasca, 1999

[13] P.A. Cundall; O.D.L. Strack A discrete numerical model for granular assemblies, Geotechnique, Volume 29 (1979) no. 1, pp. 47-65

[14] P.A. Cundall Computer simulations of dense spheres assemblies (B.V.M. Satake; J.T. Jenkins, eds.), Micromechanics of Granular Materials, Elsevier Science Publisher, 1988, pp. 113-123

[15] R.D. Mindlin; H. Deresiewicz Elastic spheres in contact under varying oblique forces, J. Appl. Mech., Volume 20 (1953), pp. 327-344

[16] R.E. Goodman Introduction to Rock Mechanics, PWS Publishing Company, 1980

[17] L.K.A. Dorren; F. Berger; U.S. Putters Real-size experiments and 3D simulation of rockfall on forested and non-forested slopes, Nat. Hazards Earth Syst. Sci., Volume 6 (2006) no. 1, pp. 145-153

[18] B. Cambou Micromechanics of Granular Materials (B. Cambou; M. Jean, eds.), Wiley and Sons, 2001

[19] F. Radjai; D.E. Wolf; M. Jean; J.-J. Moreau Bimodal character of stress transmission in granular packings, Phys. Rev. Lett., Volume 80 (1998), pp. 61-64

[20] C. Coste; E. Falcon; S. Fauve Solitary waves in a chain of beads under Hertz contact, Phys. Rev. E, Volume 56 (1997) no. 5, pp. 6104-6117

[21] C.S. Campbell A problem related to the stability of force chains, Granular Matter, Volume 5 (2003), pp. 129-134

[22] S. Job; F. Melo; A. Sokolow; S. Sen Solitary wave trains in granular chains: experiments, theory and simulations, Granular Matter, Volume 10 (2007), pp. 13-20

  • Jude Shalitha Perera; Nelson Lam Rockfall protection wall that can withstand multiple strikes without needing to be repaired, International Journal of Impact Engineering, Volume 173 (2023), p. 104476 | DOI:10.1016/j.ijimpeng.2022.104476
  • Shaomin Liang; Y.T. Feng; Tingting Zhao; Zhihua Wang On energy transfer and dissipation of intruder impacting granular materials based on discrete element simulations, Powder Technology, Volume 419 (2023), p. 118347 | DOI:10.1016/j.powtec.2023.118347
  • C. di Prisco; I. Redaelli; M. Zerbi Inclined Block Impacts on Granular Strata: Coupled DEM-FDM Numerical Investigation and Rheological Modelling, Rock Mechanics and Rock Engineering (2023) | DOI:10.1007/s00603-023-03406-z
  • G. Dattola; C. di Prisco; G. B. Crosta Modeling Ellipsoidal Block Impacts by an Advanced Rheological Model, Rock Mechanics and Rock Engineering, Volume 56 (2023) no. 11, p. 7997 | DOI:10.1007/s00603-023-03464-3
  • Haibo Wang; Chengchao Guo; Fuming Wang; Pengpeng Ni; Wei Sun Peridynamics simulation of structural damage characteristics in rock sheds under rockfall impact, Computers and Geotechnics, Volume 143 (2022), p. 104625 | DOI:10.1016/j.compgeo.2021.104625
  • Weigang Shen; Tao Zhao; Giovanni B. Crosta; Feng Dai; Giuseppe Dattola Influence of Inter-Particle Friction and Damping on the Dynamics of Spherical Projectile Impacting Onto a Soil Bed, Frontiers in Earth Science, Volume 10 (2022) | DOI:10.3389/feart.2022.835271
  • Hongzhi Qiu; Jintao Yuan; Peifeng Han; Miao Yang; Wenyao Huang; Xu Fang; Yuxin Li DEM analysis of micromechanics and buffering capacity of superquadric mixture granular materials under impact load, Frontiers in Earth Science, Volume 10 (2022) | DOI:10.3389/feart.2022.959930
  • Mincai Jia; Bo Liu; Jianfeng Xue; Guoqing Ma Coupled three-dimensional discrete element–finite difference simulation of dynamic compaction, Acta Geotechnica, Volume 16 (2021) no. 3, p. 731 | DOI:10.1007/s11440-020-01055-y
  • Naomi Murdoch; Melanie Drilleau; Cecily Sunday; Florian Thuillet; Arnaud Wilhelm; Gautier Nguyen; Yves Gourinat Low-velocity impacts into granular material: application to small-body landing, Monthly Notices of the Royal Astronomical Society, Volume 503 (2021) no. 3, p. 3460 | DOI:10.1093/mnras/stab624
  • Z.H. Xu; W.Y. Wang; P. Lin; X.T. Wang; T.F. Yu Buffering Effect of Overlying Sand Layer Technology for Dealing with Rockfall Disaster in Tunnels and a Case Study, International Journal of Geomechanics, Volume 20 (2020) no. 8 | DOI:10.1061/(asce)gm.1943-5622.0001751
  • Weigang Shen; Tao Zhao; Feng Dai; Giovanni B. Crosta; Houzhen Wei Discrete Element Analyses of a Realistic-shaped Rock Block Impacting Against a Soil Buffering Layer, Rock Mechanics and Rock Engineering, Volume 53 (2020) no. 8, p. 3807 | DOI:10.1007/s00603-020-02116-0
  • Y. Su; Y. Cui; C.W.W. Ng; C.E. Choi; J.S.H. Kwan Effects of particle size and cushioning thickness on the performance of rock-filled gabions used in protection against boulder impact, Canadian Geotechnical Journal, Volume 56 (2019) no. 2, p. 198 | DOI:10.1139/cgj-2017-0370
  • Weigang Shen; Tao Zhao; Feng Dai; Mingjing Jiang; Gordon G.D. Zhou DEM analyses of rock block shape effect on the response of rockfall impact against a soil buffering layer, Engineering Geology, Volume 249 (2019), p. 60 | DOI:10.1016/j.enggeo.2018.12.011
  • Víctor Francia; Luis Martín; Andrew E. Bayly; Mark J.H. Simmons Agglomeration during spray drying: Airborne clusters or breakage at the walls?, Chemical Engineering Science, Volume 162 (2017), p. 284 | DOI:10.1016/j.ces.2016.12.033
  • Lingran Zhang; Stéphane Lambert; François Nicot Discrete dynamic modelling of the mechanical behaviour of a granular soil, International Journal of Impact Engineering, Volume 103 (2017), p. 76 | DOI:10.1016/j.ijimpeng.2017.01.009
  • Antoinette Tordesillas; Enlong Liu Evolution of mesoscopic granular clusters in comminution systems: a structural mechanics model of grain breakage and force chain buckling, Continuum Mechanics and Thermodynamics, Volume 27 (2015) no. 1-2, pp. 105-132 | DOI:10.1007/s00161-014-0336-y | Zbl:1341.74070

Cité par 16 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: