[Étude par approches multi-échelles de la réponse mécanique d'un milieu granulaire induite par l'extraction de ses particules]
A multi-scale approach is proposed as an attempt to assess internal erosion induced effects on the mechanical properties of a granular medium. When submitted to internal flow, some particles tend to be removed from the initial granular material, leading to drastic changes in the microstructure. The medium is changing during its lifetime and this cannot be ignored in attempts to model its mechanical behavior. In this first analysis, the degradation of a granular assembly is simulated through the progressive removal of its finest particles for both isotropic and anisotropic stress states. A discrete element model as well as an analytical micromechanical model are used to compare induced deformations and properties changes along the erosion process. The shear strength and flow properties appear to be strongly modified by this extraction phase: both models highlight a change from a dilatant to a contractant behavior with the degradation as well as strong dependency of the overall stability on the mobilized friction level. In particular, results show how failure is triggered when particle removal occurs for mobilized frictions greater than the one reached at the critical state.
Une approche multi-échelle est proposée dans le but d'étudier les effets de l'érosion interne sur les propriétés mécaniques d'un milieu granulaire. Dans cette première analyse, la dégradation d'un assemblage granulaire est simulée par la suppression progressive de ses particules les plus fines pour différents états de contrainte, isotropes et anisotropes. Un modèle aux élements discrets ainsi qu'un modèle micromécanique analytique sont utilisés dans le but de comparer les déformations et les modifications induites sur le milieu. La resistance au cisaillement et les propriétés d'écoulement du matériau semblent être significativement modifiées par un tel processus d'extraction : les deux modèles sont unanimes pour mettre en évidence le passage d'un comportement dilatant à un comportement contractant du matériau avec sa dégradation, ainsi q'une dépendance critique de sa stabilité globale selon le niveau du frottement mobilisé auquel l'extraction de ses particules solides est réalisée. En particulier, les resultats montrent une tendance à l'effondrement lorsque l'extraction intervient pour des frottements mobilisés supérieurs à celui atteint à l'état critique.
Mots-clés : Milieux granulaires, Micromécanique, Érosion, Rupture
Luc Scholtès 1, 2 ; Pierre-Yves Hicher 2 ; Luc Sibille 2
@article{CRMECA_2010__338_10-11_627_0, author = {Luc Scholt\`es and Pierre-Yves Hicher and Luc Sibille}, title = {Multiscale approaches to describe mechanical responses induced by particle removal in granular materials}, journal = {Comptes Rendus. M\'ecanique}, pages = {627--638}, publisher = {Elsevier}, volume = {338}, number = {10-11}, year = {2010}, doi = {10.1016/j.crme.2010.10.003}, language = {en}, }
TY - JOUR AU - Luc Scholtès AU - Pierre-Yves Hicher AU - Luc Sibille TI - Multiscale approaches to describe mechanical responses induced by particle removal in granular materials JO - Comptes Rendus. Mécanique PY - 2010 SP - 627 EP - 638 VL - 338 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2010.10.003 LA - en ID - CRMECA_2010__338_10-11_627_0 ER -
%0 Journal Article %A Luc Scholtès %A Pierre-Yves Hicher %A Luc Sibille %T Multiscale approaches to describe mechanical responses induced by particle removal in granular materials %J Comptes Rendus. Mécanique %D 2010 %P 627-638 %V 338 %N 10-11 %I Elsevier %R 10.1016/j.crme.2010.10.003 %G en %F CRMECA_2010__338_10-11_627_0
Luc Scholtès; Pierre-Yves Hicher; Luc Sibille. Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. Comptes Rendus. Mécanique, Micromechanics of granular materials, Volume 338 (2010) no. 10-11, pp. 627-638. doi : 10.1016/j.crme.2010.10.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.10.003/
[1] C.F. Wan, R. Fell, Experimental investigation of internal instability of soils in embankment dams and their foundations, UNICIV Rep. No. R 429, The Univ. of New South Wales, Sydney, 2004.
[2] Internal stability of granular filters, Canad. Geotech. J., Volume 22 (1985) no. 2, pp. 215-225
[3] Volumetric sand production model and experiment, Int. J. Num. Anal. Meth. Geomech., Volume 25 (2001), pp. 789-808
[4] Effects of the erosion and transport of fine particles due to seepage flow, Int. J. Geomech. ASCE, Volume 3 (2003) no. 1, pp. 111-122
[5] D. Muir-Wood, K. Maeda, E. Nukudani, Discrete element modelling of soil erosion, in: Proc. 4th Int. Conf. on Scour and Erosion, vol. 29 (1), The Japanese Geotechnical Society, Tokyo, November 2008, pp. 47–65.
[6] Changing grading of soils: effect on critical states, Acta Geotechnica, Volume 3 (2008) no. 3, pp. 3-14
[7] A discrete numerical model for granular assemblies, Géotechnique, Volume 29 (1979) no. 1, pp. 47-65
[8] An elastoplastic model for granular materials with analytical consideration, Int. J. Solids Struct., Volume 42 (2005) no. 12, pp. 4258-4277
[9] A new open-source software using a discrete element method to simulate granular material, Comput. Methods Appl. Mech. Engrg., Volume 197 (2008), pp. 4429-4443
[10] Multiscale force networks in highly polydisperse granular media, Phys. Rev. Lett., Volume 102 (2009) no. 17, p. 178001
[11] L. Sibille, L. Scholtès, Effects of internal erosion on mechanical behavior of soils: a DEM approach, in: E. Õnate, D.R.J. Owen (Eds.), Proc. Int. Conf. on Particle-Based Methods, Particles 2009, Barcelona, 25–27 November 2009, pp. 167–170.
[12] Multi-scale analysis of the stress state in a granular slope in transition to failure, Eur. Phys. J. E, Volume 18 (2005), pp. 311-320
[13] Numerical investigation of shear zones in granular materials, Friction, Arching, Contact Dynamics, World Scientific, Singapore, 1997, pp. 233-247
[14] Characteristics of cohesionless soils affecting the stability of slopes and earth fills, J. Boston Soc. Civil Engineers, Volume 23 (1936), pp. 257-276
[15] Co-ordination number and its relation to shear strength of granular material, Soils and Foundations, Volume 17 (1977) no. 2, pp. 29-42
[16] Anisotropic nonlinear elastic model for particulate materials, J. Geotech. Geoenvir. Engrg., Volume 132 (2006) no. 8, pp. 1052-1061
- Coupled DFM-DEM-EFCM investigation on the suffusion in gap-graded clayey sands, Computers and Geotechnics, Volume 179 (2025), p. 107004 | DOI:10.1016/j.compgeo.2024.107004
- Study on particle loss-induced deformation of gap-graded soils: role of particle stress, Acta Geotechnica, Volume 19 (2024) no. 12, p. 7865 | DOI:10.1007/s11440-024-02377-x
- Internal erosion of a gap-graded soil and influences on the critical state, Acta Geotechnica, Volume 19 (2024) no. 8, p. 5363 | DOI:10.1007/s11440-024-02249-4
- Mechanical Consequences of Suffusion on Gap-Graded Soils with Stress Anisotropy: A CFD–DEM Perspective, Buildings, Volume 14 (2024) no. 1, p. 122 | DOI:10.3390/buildings14010122
- Effects of pre-shearing stress ratio on the mechanical behaviours of gap-graded soils subjected to internal erosion, Computers and Geotechnics, Volume 166 (2024), p. 105991 | DOI:10.1016/j.compgeo.2023.105991
- Heterogeneous characteristics of stress transmission within finer fraction of gap-graded soils and its relevance to suffusion, Computers and Geotechnics, Volume 175 (2024), p. 106669 | DOI:10.1016/j.compgeo.2024.106669
- Modelling of suffusion in heterogeneous soils using discrete element method, European Journal of Environmental and Civil Engineering, Volume 28 (2024) no. 3, p. 611 | DOI:10.1080/19648189.2023.2219712
- Stress stress-strain behavior of hydraulic filled coral sand subjected to internal erosion, IOP Conference Series: Earth and Environmental Science, Volume 1337 (2024) no. 1, p. 012071 | DOI:10.1088/1755-1315/1337/1/012071
- A Comprehensive Study on the Consequences of Gap-Graded Sands Considering the Loss of Fine Particles, Journal of Earth Science, Volume 35 (2024) no. 2, p. 597 | DOI:10.1007/s12583-022-1764-4
- Experimental Study of Suffusion in Sand–Clay Mixtures under Variably Saturated Conditions, Journal of Geotechnical and Geoenvironmental Engineering, Volume 150 (2024) no. 9 | DOI:10.1061/jggefk.gteng-12052
- Modelling internal erosion using 2D smoothed particle hydrodynamics (SPH), Journal of Hydrology, Volume 639 (2024), p. 131558 | DOI:10.1016/j.jhydrol.2024.131558
- A CFD–DEM study on the suffusion and shear behaviors of gap-graded soils under stress anisotropy, Acta Geotechnica, Volume 18 (2023) no. 6, p. 3091 | DOI:10.1007/s11440-022-01755-7
- Erosion of soil around damaged buried water pipes—a critical review, Arabian Journal of Geosciences, Volume 16 (2023) no. 5 | DOI:10.1007/s12517-023-11391-4
- Effect of fines loss on the microstructure and shear behaviors of gap-graded soils: A multiscale perspective, Computers and Geotechnics, Volume 162 (2023), p. 105711 | DOI:10.1016/j.compgeo.2023.105711
- A framework for coupled hydro-mechanical continuous modelling of gap-graded granular soils subjected to suffusion, European Journal of Environmental and Civil Engineering, Volume 27 (2023) no. 8, p. 2678 | DOI:10.1080/19648189.2020.1795724
- Editorial for the Special Issue: Innovative numerical methods for soil internal erosion processes, Geomechanics for Energy and the Environment, Volume 33 (2023), p. 100414 | DOI:10.1016/j.gete.2022.100414
- Numerical Simulation of Mechanical Properties of Soil Considering the Effect of Internal Erosion, Mathematics, Volume 11 (2023) no. 13, p. 2959 | DOI:10.3390/math11132959
- Soil Erosion Due to Defective Pipes: A Hidden Hazard Beneath Our Feet, Sustainability, Volume 15 (2023) no. 11, p. 8931 | DOI:10.3390/su15118931
- Multiscale modeling of seepage-induced suffusion and slope failure using a coupled FEM–DEM approach, Computer Methods in Applied Mechanics and Engineering, Volume 398 (2022), p. 115177 | DOI:10.1016/j.cma.2022.115177
- A five-phase approach, SPH framework and applications for predictions of seepage-induced internal erosion and failure in unsaturated/saturated porous media, Computer Methods in Applied Mechanics and Engineering, Volume 401 (2022), p. 41 (Id/No 115614) | DOI:10.1016/j.cma.2022.115614 | Zbl:1507.74128
- Clogging effect of fines in seepage erosion by using CFD–DEM, Computers and Geotechnics, Volume 152 (2022), p. 105013 | DOI:10.1016/j.compgeo.2022.105013
- Evaluation of loess-filled slope failure triggered by groundwater rise using a flume test, Geomatics, Natural Hazards and Risk, Volume 13 (2022) no. 1, p. 2471 | DOI:10.1080/19475705.2022.2122592
- A DEM study of the effect of the loss of fine particles on the mechanical behavior of gap-graded soils, Geomechanics for Energy and the Environment, Volume 31 (2022), p. 100305 | DOI:10.1016/j.gete.2021.100305
- Internal erosion by suffusion on cohesionless gap-graded soils: Model and sensibility analysis, Geomechanics for Energy and the Environment, Volume 31 (2022), p. 100313 | DOI:10.1016/j.gete.2022.100313
- Mesoscale Investigation of Fine Grain Contribution to Contact Stress in Granular Materials, Journal of Engineering Mechanics, Volume 148 (2022) no. 3 | DOI:10.1061/(asce)em.1943-7889.0002078
- Laboratory investigation of erosion behavior at the soil–structure interface affected by various structural factors, Natural Hazards, Volume 111 (2022) no. 1, p. 1065 | DOI:10.1007/s11069-021-05070-4
- Influence of density on the post-suffusion behavior of gap-graded sand with fines, Soils and Foundations, Volume 62 (2022) no. 3, p. 101159 | DOI:10.1016/j.sandf.2022.101159
- The Influence of Mixing Degree between Coarse and Fine Particles on the Strength of Offshore and Coast Foundations, Sustainability, Volume 14 (2022) no. 15, p. 9177 | DOI:10.3390/su14159177
- Impact of Piping Erosion Process on the Temporal–Spatial Mechanisms of Soil, Water, Volume 14 (2022) no. 18, p. 2841 | DOI:10.3390/w14182841
- Size distribution of free particles in soils: a geometric modelling approach, Acta Geotechnica, Volume 16 (2021) no. 12, p. 3849 | DOI:10.1007/s11440-021-01356-w
- Investigating the effect of flow direction on suffusion and its impacts on gap-graded granular soils, Acta Geotechnica, Volume 16 (2021) no. 2, p. 399 | DOI:10.1007/s11440-020-01012-9
- Microscopic mechanism of particle detachment in granular materials subjected to suffusion in anisotropic stress states, Acta Geotechnica, Volume 16 (2021) no. 8, p. 2575 | DOI:10.1007/s11440-021-01301-x
- Modeling of internal erosion using particle size as an extra dimension, Computers and Geotechnics, Volume 133 (2021), p. 104021 | DOI:10.1016/j.compgeo.2021.104021
- Change in mechanical behaviour of gap-graded soil subjected to internal erosion observed in triaxial compression and torsional shear, Geomechanics for Energy and the Environment, Volume 27 (2021), p. 100197 | DOI:10.1016/j.gete.2020.100197
- Effects of grain morphology on suffusion susceptibility of cohesionless soils, Granular Matter, Volume 23 (2021) no. 1 | DOI:10.1007/s10035-020-01075-1
- The internal erosion process and effects of undisturbed loess due to water infiltration, Landslides, Volume 18 (2021) no. 2, p. 629 | DOI:10.1007/s10346-020-01518-z
- Shear behaviours of cohesionless mixed soils using the DEM: The influence of coarse particle shape, Particuology, Volume 55 (2021), p. 151 | DOI:10.1016/j.partic.2020.07.002
- Experimental study on suffusion under multiple seepages and its impact on undrained mechanical responses of gap-graded soil, Soils and Foundations, Volume 61 (2021) no. 6, p. 1660 | DOI:10.1016/j.sandf.2021.10.003
- Modeling of Suffusion Considering the Influence of Soil Gradation, Transport in Porous Media, Volume 136 (2021) no. 3, p. 765 | DOI:10.1007/s11242-020-01534-6
- Experimental study on the effect of fine contents on internal erosion in natural soil deposits, Bulletin of Engineering Geology and the Environment, Volume 79 (2020) no. 8, p. 4135 | DOI:10.1007/s10064-020-01829-4
- Influence of particle-size distribution homogeneity on shearing of soils subjected to internal erosion, Canadian Geotechnical Journal, Volume 57 (2020) no. 11, p. 1684 | DOI:10.1139/cgj-2019-0273
- Hydromechanical modeling of granular soils considering internal erosion, Canadian Geotechnical Journal, Volume 57 (2020) no. 2, p. 157 | DOI:10.1139/cgj-2018-0653
- Modeling of fluid-particle interaction by coupling the discrete element method with a dynamic fluid mesh: Implications to suffusion in gap-graded soils, Computers and Geotechnics, Volume 124 (2020), p. 103617 | DOI:10.1016/j.compgeo.2020.103617
- Modelling the poroelastoplastic behaviour of soils subjected to internal erosion by suffusion, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 44 (2020) no. 1, p. 117 | DOI:10.1002/nag.3014
- Simulating Progression of Internal Erosion in Gap-Graded Sandy Gravels Using Coupled CFD-DEM, International Journal of Geomechanics, Volume 20 (2020) no. 1 | DOI:10.1061/(asce)gm.1943-5622.0001520
- Modeling the Effects of Internal Erosion on the Structural Damage of a Shield Tunnel, International Journal of Geomechanics, Volume 20 (2020) no. 6 | DOI:10.1061/(asce)gm.1943-5622.0001691
- Suffusion-Induced Evolution of Mechanical and Microstructural Properties of Gap-Graded Soils Using CFD-DEM, Journal of Geotechnical and Geoenvironmental Engineering, Volume 146 (2020) no. 5 | DOI:10.1061/(asce)gt.1943-5606.0002245
- Influence of the rolling-resistance-based shape of coarse particles on the shear responses of granular mixtures, Particuology, Volume 52 (2020), p. 67 | DOI:10.1016/j.partic.2019.12.004
- Microscopic investigation of internal erosion in binary mixtures via the coupled LBM-DEM method, Powder Technology, Volume 376 (2020), p. 31 | DOI:10.1016/j.powtec.2020.07.099
- Constitutive Relations of Saturated Soils: An Overview, Practice of Constitutive Modelling for Saturated Soils (2020), p. 1 | DOI:10.1007/978-981-15-6307-2_1
- Three-dimensional DEM modeling of the stress–strain behavior for the gap-graded soils subjected to internal erosion, Acta Geotechnica, Volume 14 (2019) no. 2, p. 487 | DOI:10.1007/s11440-018-0655-4
- Suffusion-induced deformation and microstructural change of granular soils: a coupled CFD–DEM study, Acta Geotechnica, Volume 14 (2019) no. 3, p. 795 | DOI:10.1007/s11440-019-00789-8
- Modeling coupled erosion and filtration of fine particles in granular media, Acta Geotechnica, Volume 14 (2019) no. 6, p. 1615 | DOI:10.1007/s11440-019-00808-8
- Relationships between the internal erosion parameters and the mechanical properties of granular materials, European Journal of Environmental and Civil Engineering, Volume 23 (2019) no. 11, p. 1368 | DOI:10.1080/19648189.2017.1347526
- Micro-scale investigation of the role of finer grains in the behavior of bidisperse granular materials, Granular Matter, Volume 21 (2019) no. 2 | DOI:10.1007/s10035-019-0867-9
- Constitutive Modeling of a Suffusive Soil with Porosity-Dependent Plasticity, Internal Erosion in Earthdams, Dikes and Levees, Volume 17 (2019), p. 168 | DOI:10.1007/978-3-319-99423-9_16
- Effects of Suffusion on the Soil’s Mechanical Behavior: Experimental Investigations, Internal Erosion in Earthdams, Dikes and Levees, Volume 17 (2019), p. 3 | DOI:10.1007/978-3-319-99423-9_1
- Modelling of internal erosion based on mixture theory: General framework and a case study of soil suffusion, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 43 (2019) no. 15, p. 2407 | DOI:10.1002/nag.2981
- Internal erosion in dike‐on‐foundation modeled by a coupled hydromechanical approach, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 43 (2019) no. 3, p. 663 | DOI:10.1002/nag.2877
- Rattlers' contribution to granular plasticity and mechanical stability, International Journal of Plasticity, Volume 112 (2019), p. 172 | DOI:10.1016/j.ijplas.2018.08.012
- Shear behaviors of granular mixtures of gravel-shaped coarse and spherical fine particles investigated via discrete element method, Powder Technology, Volume 353 (2019), p. 178 | DOI:10.1016/j.powtec.2019.05.016
- Strength changes during internal erosion of gap-graded soils, Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, Volume 172 (2019) no. 4, p. 331 | DOI:10.1680/jgeen.18.00064
- Particle loss: An initial investigation into size effects and stress-dilatancy, Soils and Foundations, Volume 59 (2019) no. 3, p. 726 | DOI:10.1016/j.sandf.2019.03.002
- Particle erosion in suffusion under isotropic and anisotropic stress states, Soils and Foundations, Volume 59 (2019) no. 5, p. 1371 | DOI:10.1016/j.sandf.2019.06.009
- Internal Erosion, Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics (2018), p. 291 | DOI:10.1016/b978-1-78548-278-6.50009-8
- A discrete numerical model involving partial fluid-solid coupling to describe suffusion effects in soils, Computers and Geotechnics, Volume 95 (2018), p. 30 | DOI:10.1016/j.compgeo.2017.11.006
- Progressive Internal Erosion in a Gap-Graded Internally Unstable Soil: Mechanical and Geometrical Effects, International Journal of Geomechanics, Volume 18 (2018) no. 3 | DOI:10.1061/(asce)gm.1943-5622.0001085
- A compression model for sand–silt mixtures based on the concept of active and inactive voids, Acta Geotechnica, Volume 12 (2017) no. 6, p. 1301 | DOI:10.1007/s11440-017-0598-1
- Microscale Analysis of the Effect of Suffusion on Soil Mechanical Properties, Bifurcation and Degradation of Geomaterials with Engineering Applications (2017), p. 117 | DOI:10.1007/978-3-319-56397-8_15
- Flume-scale experiments on suffusion at bottom of cutoff wall in sandy gravel alluvium, Canadian Geotechnical Journal, Volume 54 (2017) no. 12, p. 1716 | DOI:10.1139/cgj-2016-0248
- Mechanical Consequences of Suffusion on Undrained Behaviour of a Gap-Graded Cohesionless Soil - An Experimental Approach, Geotechnical Testing Journal, Volume 40 (2017) no. 6, p. 1026 | DOI:10.1520/gtj20160145
- Scale separation between grain detachment and grain transport in granular media subjected to an internal flow, Granular Matter, Volume 19 (2017) no. 2 | DOI:10.1007/s10035-017-0706-9
- Discussion of “Stress-Strain Behavior of Granular Soils Subjected to Internal Erosion” by C. Chen, L. M. Zhang, and D. S. Chang, Journal of Geotechnical and Geoenvironmental Engineering, Volume 143 (2017) no. 9 | DOI:10.1061/(asce)gt.1943-5606.0001727
- Hydro-mechanical analysis of rainfall-induced fines migration process within unsaturated soils, Journal of Mountain Science, Volume 14 (2017) no. 12, p. 2603 | DOI:10.1007/s11629-017-4359-2
- Influence of initial fines content on fabric of soils subjected to internal erosion, Canadian Geotechnical Journal, Volume 53 (2016) no. 2, p. 299 | DOI:10.1139/cgj-2014-0344
- Analysis of mechanical behaviour and internal stability of granular materials using discrete element method, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 40 (2016) no. 12, p. 1712 | DOI:10.1002/nag.2510
- A micro-mechanical model for the plasticity of porous granular media and link with the Cam clay model, International Journal of Plasticity, Volume 79 (2016), p. 259 | DOI:10.1016/j.ijplas.2015.07.003
- Stress-Strain Behavior of Granular Soils Subjected to Internal Erosion, Journal of Geotechnical and Geoenvironmental Engineering, Volume 142 (2016) no. 12 | DOI:10.1061/(asce)gt.1943-5606.0001561
- Primary fabric fraction analysis of granular soils, Acta Geotechnica, Volume 10 (2015) no. 3, p. 375 | DOI:10.1007/s11440-014-0353-9
- A description of internal erosion by suffusion and induced settlements on cohesionless granular matter, Acta Geotechnica, Volume 10 (2015) no. 6, p. 735 | DOI:10.1007/s11440-015-0388-6
- On the degradation of granular materials due to internal erosion, Acta Mechanica Sinica, Volume 31 (2015) no. 5, pp. 685-697 | DOI:10.1007/s10409-015-0466-x | Zbl:1345.74028
- Modeling wave-induced pore pressure and effective stress in a granular seabed, Continuum Mechanics and Thermodynamics, Volume 27 (2015) no. 1-2, p. 305 | DOI:10.1007/s00161-014-0377-2
- A comparison of micromechanical assessments with internal stability/instability criteria for soils, Powder Technology, Volume 276 (2015), p. 66 | DOI:10.1016/j.powtec.2015.02.014
- Mechanical consequences of internal soil erosion, HKIE Transactions, Volume 21 (2014) no. 4, p. 198 | DOI:10.1080/1023697x.2014.970746
- Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil, Soils and Foundations, Volume 54 (2014) no. 4, p. 713 | DOI:10.1016/j.sandf.2014.06.024
- Micromechanical assessment of an internal stability criterion, Acta Geotechnica, Volume 8 (2013) no. 1, p. 81 | DOI:10.1007/s11440-012-0176-5
- Modelling the impact of particle removal on granular material behaviour, Géotechnique, Volume 63 (2013) no. 2, p. 118 | DOI:10.1680/geot.11.p.020
- Stress transmission in internally unstable gap-graded soils using discrete element modeling, Powder Technology, Volume 247 (2013), p. 161 | DOI:10.1016/j.powtec.2013.07.020
- Suffusion tests on cohesionless granular matter, European Journal of Environmental and Civil Engineering, Volume 15 (2011) no. 5, p. 799 | DOI:10.1080/19648189.2011.9693366
- A Stress-controlled Erosion Apparatus for Studying Internal Erosion in Soils, Geotechnical Testing Journal, Volume 34 (2011) no. 6, p. 579 | DOI:10.1520/gtj103889
Cité par 90 documents. Sources : Crossref, zbMATH
Commentaires - Politique