Comptes Rendus
A DEM analysis of step-path failure in jointed rock slopes
Comptes Rendus. Mécanique, Volume 343 (2015) no. 2, pp. 155-165.

A numerical analysis of step-path failure mechanisms in rock slopes is provided based upon simulations performed using a discrete element method specifically enhanced for the modeling of jointed rock masses. Fracturing of the intact rock as well as yielding within discontinuities can be simulated to determine the failure surface without any a priori assumption on its location. For both coplanar and non-coplanar sets of discontinuities, failure is the result of the propagation of tensile microcracks that develop in the rock bridges from the tips of pre-existing discontinuity planes in a way similar to wing cracks extensions that can eventually coalesce to form extended step-path failure surfaces. Sensitivity analyses are performed to better understand the critical mechanisms that lead to slope failure and to discriminate between the respective roles played by intact rock and planes of weakness at the onset of failure. For a randomly distributed set of joints that share the same preferential orientation, failure is shown to be dependent on the frictional strength mobilized on the joint surfaces. The results confirm the critical need for a comprehensive and extensive characterization of both mechanical and geometrical properties of discontinuities when assessing the stability of a rock mass.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2014.11.002
Mots clés : Numerical modeling, Discrete element method, Rock slope stability, Step-path failure, Fracturing
Luc Scholtès 1 ; Frédéric V. Donzé 2

1 Université de Lorraine/CNRS/CREGU, UMR 7359 GeoRessources, BP 40, 54501 Vandœuvre-lès-Nancy, France
2 Université Joseph Fourier-Grenoble-1/Grenoble INP/CNRS, UMR 5521 3SR, 38041 Grenoble cedex 9, France
@article{CRMECA_2015__343_2_155_0,
     author = {Luc Scholt\`es and Fr\'ed\'eric V. Donz\'e},
     title = {A {DEM} analysis of step-path failure in jointed rock slopes},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {155--165},
     publisher = {Elsevier},
     volume = {343},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crme.2014.11.002},
     language = {en},
}
TY  - JOUR
AU  - Luc Scholtès
AU  - Frédéric V. Donzé
TI  - A DEM analysis of step-path failure in jointed rock slopes
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 155
EP  - 165
VL  - 343
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2014.11.002
LA  - en
ID  - CRMECA_2015__343_2_155_0
ER  - 
%0 Journal Article
%A Luc Scholtès
%A Frédéric V. Donzé
%T A DEM analysis of step-path failure in jointed rock slopes
%J Comptes Rendus. Mécanique
%D 2015
%P 155-165
%V 343
%N 2
%I Elsevier
%R 10.1016/j.crme.2014.11.002
%G en
%F CRMECA_2015__343_2_155_0
Luc Scholtès; Frédéric V. Donzé. A DEM analysis of step-path failure in jointed rock slopes. Comptes Rendus. Mécanique, Volume 343 (2015) no. 2, pp. 155-165. doi : 10.1016/j.crme.2014.11.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.11.002/

[1] E. Eberhardt; D. Stead; J.S. Coggan Numerical analysis of initiation and progressive failure in natural rock slopes – the 1991 Randa rockslide, Int. J. Rock Mech. Min. Sci., Volume 41 (2004), pp. 69-87

[2] D. Stead; E. Eberhardt; J.S. Coggan Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques, Eng. Geol., Volume 83 (2006), pp. 217-235

[3] E.Z. Latjai Shear strength of weakness planes in rock, Int. J. Rock Mech. Min. Sci., Volume 6 (1969), pp. 499-515

[4] J.E. Jennings A mathematical theory for the calculation of the stability in open cast mines, Johannesburg, South Africa (1970), pp. 87-102

[5] H.H. Einstein; D. Veneziano; G.H. Baecher; K.J. O'Reilly The effect of discontinuity persistence on rock slope stability, Int. J. Rock Mech. Min. Sci., Volume 20 (1983) no. 5, pp. 227-236

[6] M. Frayssines; D. Hantz Failure mechanisms and triggering factors in calcareous cliffs of the Subalpine ranges (French Alps), Eng. Geol., Volume 86 (2006), pp. 256-270

[7] M.A. Brideau; M. Yang; D. Stead The role of tectonic damage and brittle rock fracture in the development of large rock slope failures, Geomorphology, Volume 103 (2009), pp. 30-49

[8] C. Wang; D.D. Tannant; P. Lilly Numerical analysis of the stability of heavily jointed rock slopes using PFC2D, Int. J. Rock Mech. Min. Sci., Volume 40 (2003), pp. 415-424

[9] L. Li; C.A. Tang; W. Zhu; Z. Liang Numerical analysis of slope stability based on the gravity increase method, Comput. Geotech., Volume 36 (2009) no. 7, pp. 1246-1258

[10] A. Vyazmensky; D. Stead; D. Elmo; A. Moss Numerical analysis of block caving-induced instability in large open pit slopes: a finite element/discrete element approach, Rock Mech. Rock Eng., Volume 43 (2010) no. 1, pp. 21-39

[11] P.A. Cundall; B. Damjanac A comprehensive 3D model for rock slopes based on micromechanics, Slope Stability 2009, Universidad de los Andes, Santiago, Chile, 2009

[12] L. Scholtès; F.V. Donzé Modelling progressive failure in fractured rock masses using a 3D discrete element method, Int. J. Rock Mech. Min. Sci., Volume 52 (2012), pp. 18-30

[13] K. Ma; C.A. Tang; L.C. Li; P.G. Ranjith; M. Cai; N.W. Xu 3D modeling of stratified and irregularly jointed rock slope and its progressive failure, Arab. J. Geosci., Volume 6 (2013) no. 6, pp. 2147-2163

[14] L. Scholtès; F.V. Donzé A DEM model for soft and hard rocks: role of grain interlocking on strength, J. Mech. Phys. Solids, Volume 61 (2012) no. 2, pp. 352-369

[15] L. Scholtès; F.V. Donzé; M. Khanal Scale effects on strength of geomaterials: coal case study, J. Mech. Phys. Solids, Volume 59 (2011) no. 5, pp. 1131-1146

[16] J. Kozicky; F.V. Donzé A new open-source software developed for numerical simulations using discrete modeling methods, Comput. Methods Appl. Mech. Eng., Volume 197 (2008), pp. 4429-4443

[17] J. Kozicky; F.V. Donzé YADE-OPEN DEM: an open-source software using a discrete element method to simulate granular material, Eng. Comput., Volume 26 (2009) no. 7, pp. 786-805

[18] V. Smilauer; E. Catalano; B. Chareyre; S. Dorofeenko; J. Duriez; A. Gladky; J. Kozicki; C. Modenese; L. Scholtès; L. Sibille; J. Stransky; K. Thoeni Yade Documentation, The Yade Project, 2010 http://yade-dem.org/doc/

[19] P.A. Cundall; O.D.L. Strack A discrete numerical model for granular assemblies, Geotechnique, Volume 29 (1979), pp. 47-65

[20] D. Mas Ivars; M.E. Pierce; C. Darcel; J. Reyes-Montes; D.O. Potyondy; R.P. Young; P.A. Cundall The synthetic rock mass approach for jointed rock mass modelling, Int. J. Rock Mech. Min. Sci., Volume 48 (2011), pp. 219-244

[21] S. Bandis; A.C. Lumsden; N.R. Barton Experimental studies of scale effects on the shear behaviour of rock joints, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 18 (1983), pp. 1-21

[22] H.J. Hermann; A. Hansen; S. Roux Fracture of disordered, elastic lattice in two dimensions, Phys. Rev. B, Volume 39 (1989), pp. 637-648

[23] G. Liliu; J.G.M. Van Mier 3D lattice type fracture model for concrete, Eng. Fract. Mech., Volume 70 (2003) no. 7–8, pp. 927-941

[24] G.F. Zhao; N. Khalili; J. Fang; J. Zhao A coupled distinct lattice spring model for rock failure under dynamic loads, Comput. Geotech., Volume 42 (2012), pp. 1-20

[25] J.-P. Plassiart; N. Belheine; F.V. Donzé A spherical discrete element model: calibration procedure and incremental response, Granul. Matter, Volume 11 (2009), pp. 293-306

[26] J. Sulem; H. Ouffroukh Shear banding in drained and undrained triaxial tests on a saturated sandstone: porosity and permeability evolution, Int. J. Rock Mech. Min. Sci., Volume 43 (2006), pp. 292-310

[27] J.-W. Park; J.-J. Song Numerical simulation of a direct shear test on a rock joint using a bonded particle model, Int. J. Rock Mech. Min. Sci., Volume 46 (2009), pp. 1315-1328

[28] E. Hoek; Z.T. Bieniawski Brittle fracture propagation in rock under compression, Int. J. Fract. Mech., Volume 1 (1965), pp. 137-155

[29] N. Cho; C.D. Martin; D.C. Sego Development of a shear zone in brittle rock subjected to direct shear, Int. J. Rock Mech. Min. Sci., Volume 45 (2008), pp. 1335-1346

[30] E. Hoek; E.T. Brown Practical estimates of rock mass strength, Int. J. Rock Mech. Min. Sci., Volume 34 (1997) no. 8, pp. 1165-1186

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

DEM analysis of the effect of joint geometry on the shear behavior of rocks

Mingjing Jiang; Jun Liu; Giovanni B. Crosta; ...

C. R. Méca (2017)


Cracking behavior and local stress characteristics around the opening surrounded by two intermittent joints: experiment and numerical simulation

Yuan-Chao Zhang; Yu-Jing Jiang; Xiao-Jie Tang; ...

C. R. Méca (2020)


Experimental evidences of transition from mode I cracking to dilatancy banding

Alexandre I. Chemenda; Si-Hung Nguyen; Jean-Pierre Petit; ...

C. R. Méca (2011)