[Influence de l'allongement des grains sur le comportement des matériaux granulaires au cours d'une compression biaxiale]
Nous étudions dans cet article l'influence de l'allongement des grains sur le comportement de matériaux granulaires denses grâce à des simulations numériques 2D de l'essai de compression biaxiale par la méthode Contact Dynamics. Les grains sont de forme hexagonale (et de quatre élongations différentes) et leur comportement est comparé au cas des grains circulaires. Pour les formes étudiées, les échantillons de grains polygonaux sont initialement plus denses que l'échantillon de disques, et on observe une diminution de la densité initiale quand l'allongement des grains augmente. L'angle de frottement à l'état résiduel augmente linéairement avec l'allongement des particules. La rotation cumulée des disques est beaucoup plus importante que celle des polygones. Enfin, on peut remarquer que pour ces hexagones allongés, les grains qui tournent beaucoup sont situés le long de fines bandes car pour ces formes, les bandes de cisaillement sont plus fines et moins fluctuantes.
In this article we study the effect of the grain elongation on the shearing behaviour of dense granular materials by means of 2D numerical simulations of biaxial compression tests, using the Contact Dynamics method. The case of grains with hexagonal shapes (and four possible different elongations) is studied in comparison to the case of a sample with circular grains. For the shapes studied, samples with polygonal grains exhibit initial densities higher than the sample with discs, and the initial density decreases when the grain elongation increases. The friction angle at the residual state increases linearly with the particle elongation ratio. The cumulative rotations of discs are higher than those of polygons. Finally, in the case of elongated hexagons, the grains with highest rotations are located along thin bands because the shear bands are thinner and more persistent for these shapes.
Mot clés : Milieux granulaires, Forme des particules, Essai biaxial, Rotations
Cécile Nouguier-Lehon 1
@article{CRMECA_2010__338_10-11_587_0, author = {C\'ecile Nouguier-Lehon}, title = {Effect of the grain elongation on the behaviour of granular materials in biaxial compression}, journal = {Comptes Rendus. M\'ecanique}, pages = {587--595}, publisher = {Elsevier}, volume = {338}, number = {10-11}, year = {2010}, doi = {10.1016/j.crme.2010.10.005}, language = {en}, }
TY - JOUR AU - Cécile Nouguier-Lehon TI - Effect of the grain elongation on the behaviour of granular materials in biaxial compression JO - Comptes Rendus. Mécanique PY - 2010 SP - 587 EP - 595 VL - 338 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2010.10.005 LA - en ID - CRMECA_2010__338_10-11_587_0 ER -
Cécile Nouguier-Lehon. Effect of the grain elongation on the behaviour of granular materials in biaxial compression. Comptes Rendus. Mécanique, Volume 338 (2010) no. 10-11, pp. 587-595. doi : 10.1016/j.crme.2010.10.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.10.005/
[1] Mechanics of Granular Materials: An Introduction, Balkema, Rotterdam/Brookfield, 1999
[2] Structured deformation in granular materials, Mech. Mater., Volume 31 (1999), pp. 407-429
[3] Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell, Gran. Matter, Volume 2 (2000), pp. 123-135
[4] Critical state and evolution of coordination number in simulated granular materials, Int. J. Solids Struct., Volume 41 (2004), pp. 5763-5774
[5] Comparing simulation and experiment of a 2D granular Couette shear device, Eur. Phys. J. E, Volume 11 (2003), pp. 325-333
[6] Micro–macro transition for anisotropic, frictional granular packings, Int. J. Solids Struct., Volume 41 (2004), pp. 5821-5836
[7] P.W. Cleary, The effect of particle shape on hopper discharge, in: Proceedings of the Second International Conference of the CFD in the Minerals and Process Industries, Melbourne, Australia, 6–8 December 1999.
[8] DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge, Appl. Math. Model., Volume 26 (2002), pp. 89-111
[9] Shear strength, interparticle locking, and dilatancy of granular materials, Can. Geotech. J., Volume 44 (2007) no. 5, pp. 579-591
[10] Effect of grain shape and angularity on the undrained response of fine sands, Can. Geotech. J., Volume 47 (2010), pp. 539-551
[11] Micromechanical features of granular assemblies with planar elliptical particles, Géotechnique, Volume 42 (1992), pp. 79-95
[12] Discrete element methods for the simulation of dense packings and heaps made of spherical and non-spherical particles, Powder Technol., Volume 109 (2000), pp. 278-292
[13] Influence of particle shape on the interplay between contact signatures and particulate strength, Int. J. Solids Struct., Volume 41 (2004), pp. 5863-5870
[14] Influence of particle shape on engineering properties of assemblies of two-dimensional polygonal-shaped particles, Géotechnique, Volume 52 (2002) no. 3, pp. 209-217
[15] Force transmission in a packing of pentagonal particles, Phys. Rev. E, Volume 76 (2007), p. 011301
[16] Influence of particle shape and angularity on the behaviour of granular materials: A numerical analysis, Int. J. Numer. Anal. Meth Geomech., Volume 27 (2003), pp. 1207-1226
[17] Structural changes in granular materials: The case of irregular polygonal particles, Int. J. Solids Struct., Volume 42 (2005), pp. 6356-6375
[18] Influence of particle shape on sheared dense granular media, Gran. Matter, Volume 9 (2007), pp. 279-291
[19] Role of anisotropy in the elastoplastic response of a polygonal packing, Phys. Rev. E, Volume 71 (2005), p. 051304
[20] Some numerical methods in multibody dynamics: Application to granular materials, Eur. J. Mech. A/Solids, Volume 13 (1994) no. 4-suppl., pp. 93-114
[21] The non-smooth contact dynamics method, Comp. Meth. Appl. Mech. Eng., Volume 177 (1999), pp. 235-257
[22] Numerical aspects of the sweeping process, Comp. Meth. Appl. Mech. Eng., Volume 177 (1999), pp. 329-349
[23] Contact Dynamics as a nonsmooth discrete element method, Mech. Mater., Volume 41 (2009), pp. 715-728
[24] A discrete numerical model for granular assemblies, Géotechnique, Volume 29 (1979), pp. 47-65
[25] Modelling ballast behaviour under dynamic loading, Part 1: A 2D polygonal discrete element method approach, Comp. Meth. Appl. Mech. Eng., Volume 195 (2005), pp. 19-22
[26] Rock-soil avalanches: Theory and simulation, J. Geophys. Res., Volume 114 (2009), p. F03004
[27] NSCD discrete element method for modelling masonry structures, Int. J. Num. Meth. Eng., Volume 64 (2005), pp. 65-94
[28] Mechanical model of cytoskeleton structuration during cell adhesion and spreading, J. Biomechanics, Volume 41 (2008), pp. 2036-2041
[29] Analysis of granular material behaviour from two kinds of numerical modelling, Proceedings of the 15th ASCE Engineering Mechanics Conference, Columbia University, New York, 2002
[30] Influence of particle elasticity in shear testers, Gran. Matter, Volume 8 (2006), pp. 35-40
[31] Fundamentals of Soil Behavior, Wiley, 2005
[32] R. Cruz Hidalgo, I. Zuriguel, D. Maza, I. Pagonabarraga, Granular packings of elongated faceted particles deposited under gravity, J. Stat. Mech. (2010) P06025.
[33] Unusually dense crystal packings of ellipsoids, Phys. Rev. Lett., Volume 92 (2004), p. 255506
[34] Underconstrained jammed packings of nonspherical hard particles: Ellipses and ellipsoids, Phys. Rev. E, Volume 75 (2007), p. 051304
[35] Particle shape effect on macro- and micro-behaviors of monodisperse ellipsoids, Int. J. Numer. Anal. Meth. Geomech., Volume 33 (2009), pp. 511-527
[36] On dense granular flows, Eur. Phys. J. E, Volume 14 (2004), pp. 341-365
[37] Stress–strain behavior and geometrical properties of packing of elongated particles, Phys. Rev. E, Volume 81 (2010), p. 051304
[38] E. Gerolymatou, F. Froiio, C. Nouguier-Lehon, Energy-rates for granular materials: Discrete characterization, in: Proceedings of the 9th International Congress on Mechanics, Limassol, Cyprus, 12–14 July 2010.
[39] Micro-deformation mechanism of shear banding process based on modified distinct element method, Powder Technol., Volume 109 (2000), pp. 192-205
[40] Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials, Gran. Matter, Volume 12 (2010) no. 5, pp. 527-541 (Special Issue: IS-Shanghai 2010: International Symposium on Geomechanics and Geotechnics: From Micro to Macro, Shanghai, China, October 2010/Guest Edited by Mingjing Jiang and Fang Liu)
[41] M. Chaze, Effect of grain shape on the behaviour of granular materials in biaxial compression, in: COMGEO Conference, Juan-les-Pins, 29 April–1 May, 2009.
[42] B. Saint-Cyr, C. Voivret, J.-Y. Delenne, F. Radjai, P. Sornay, Effect of shape nonconvexity on the shear strength of granular media, in: M. Nakagawa, S. Luding (Eds.), Proceedings of Powders and Grains Conference, 13–17 July 2009, Golden, USA, pp. 389–392.
[43] K. Szarf, G. Combe, P. Villard, Influence of the grains shape on the mechanical behavior of granular materials, in: M. Nakagawa, S. Luding (Eds.), Proceedings of Powders and Grains Conference, 13–17 July 2009, Golden, USA, pp. 357–360.
Cité par Sources :
Commentaires - Politique