Comptes Rendus
Effect of the grain elongation on the behaviour of granular materials in biaxial compression
[Influence de l'allongement des grains sur le comportement des matériaux granulaires au cours d'une compression biaxiale]
Comptes Rendus. Mécanique, Volume 338 (2010) no. 10-11, pp. 587-595.

Nous étudions dans cet article l'influence de l'allongement des grains sur le comportement de matériaux granulaires denses grâce à des simulations numériques 2D de l'essai de compression biaxiale par la méthode Contact Dynamics. Les grains sont de forme hexagonale (et de quatre élongations différentes) et leur comportement est comparé au cas des grains circulaires. Pour les formes étudiées, les échantillons de grains polygonaux sont initialement plus denses que l'échantillon de disques, et on observe une diminution de la densité initiale quand l'allongement des grains augmente. L'angle de frottement à l'état résiduel augmente linéairement avec l'allongement des particules. La rotation cumulée des disques est beaucoup plus importante que celle des polygones. Enfin, on peut remarquer que pour ces hexagones allongés, les grains qui tournent beaucoup sont situés le long de fines bandes car pour ces formes, les bandes de cisaillement sont plus fines et moins fluctuantes.

In this article we study the effect of the grain elongation on the shearing behaviour of dense granular materials by means of 2D numerical simulations of biaxial compression tests, using the Contact Dynamics method. The case of grains with hexagonal shapes (and four possible different elongations) is studied in comparison to the case of a sample with circular grains. For the shapes studied, samples with polygonal grains exhibit initial densities higher than the sample with discs, and the initial density decreases when the grain elongation increases. The friction angle at the residual state increases linearly with the particle elongation ratio. The cumulative rotations of discs are higher than those of polygons. Finally, in the case of elongated hexagons, the grains with highest rotations are located along thin bands because the shear bands are thinner and more persistent for these shapes.

Publié le :
DOI : 10.1016/j.crme.2010.10.005
Keywords: Granular media, Particle shape, Biaxial test, Rotations
Mot clés : Milieux granulaires, Forme des particules, Essai biaxial, Rotations
Cécile Nouguier-Lehon 1

1 Université de Lyon, École centrale de Lyon, LTDS UMR 5513, 36, avenue Guy-de-Collongue, 69134 Écully cedex, France
@article{CRMECA_2010__338_10-11_587_0,
     author = {C\'ecile Nouguier-Lehon},
     title = {Effect of the grain elongation on the behaviour of granular materials in biaxial compression},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {587--595},
     publisher = {Elsevier},
     volume = {338},
     number = {10-11},
     year = {2010},
     doi = {10.1016/j.crme.2010.10.005},
     language = {en},
}
TY  - JOUR
AU  - Cécile Nouguier-Lehon
TI  - Effect of the grain elongation on the behaviour of granular materials in biaxial compression
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 587
EP  - 595
VL  - 338
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crme.2010.10.005
LA  - en
ID  - CRMECA_2010__338_10-11_587_0
ER  - 
%0 Journal Article
%A Cécile Nouguier-Lehon
%T Effect of the grain elongation on the behaviour of granular materials in biaxial compression
%J Comptes Rendus. Mécanique
%D 2010
%P 587-595
%V 338
%N 10-11
%I Elsevier
%R 10.1016/j.crme.2010.10.005
%G en
%F CRMECA_2010__338_10-11_587_0
Cécile Nouguier-Lehon. Effect of the grain elongation on the behaviour of granular materials in biaxial compression. Comptes Rendus. Mécanique, Volume 338 (2010) no. 10-11, pp. 587-595. doi : 10.1016/j.crme.2010.10.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.10.005/

[1] M. Oda; K. Iwashita Mechanics of Granular Materials: An Introduction, Balkema, Rotterdam/Brookfield, 1999

[2] M.R. Kuhn Structured deformation in granular materials, Mech. Mater., Volume 31 (1999), pp. 407-429

[3] M. Lätzel; S. Luding; H.J. Herrmann Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell, Gran. Matter, Volume 2 (2000), pp. 123-135

[4] L. Rothenburg; N.P. Kruyt Critical state and evolution of coordination number in simulated granular materials, Int. J. Solids Struct., Volume 41 (2004), pp. 5763-5774

[5] M. Lätzel; S. Luding; H.J. Herrmann; D.W. Howell; R.P. Behringer Comparing simulation and experiment of a 2D granular Couette shear device, Eur. Phys. J. E, Volume 11 (2003), pp. 325-333

[6] S. Luding Micro–macro transition for anisotropic, frictional granular packings, Int. J. Solids Struct., Volume 41 (2004), pp. 5821-5836

[7] P.W. Cleary, The effect of particle shape on hopper discharge, in: Proceedings of the Second International Conference of the CFD in the Minerals and Process Industries, Melbourne, Australia, 6–8 December 1999.

[8] P.W. Cleary; M.L. Sawley DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge, Appl. Math. Model., Volume 26 (2002), pp. 89-111

[9] P. Guo; X. Su Shear strength, interparticle locking, and dilatancy of granular materials, Can. Geotech. J., Volume 44 (2007) no. 5, pp. 579-591

[10] A. Tsomokos; V.N. Georgiannou Effect of grain shape and angularity on the undrained response of fine sands, Can. Geotech. J., Volume 47 (2010), pp. 539-551

[11] L. Rothenburg; R.J. Bathurst Micromechanical features of granular assemblies with planar elliptical particles, Géotechnique, Volume 42 (1992), pp. 79-95

[12] H.-G. Matuttis; S. Luding; H.J. Herrmann Discrete element methods for the simulation of dense packings and heaps made of spherical and non-spherical particles, Powder Technol., Volume 109 (2000), pp. 278-292

[13] S. Antony; M. Kuhn Influence of particle shape on the interplay between contact signatures and particulate strength, Int. J. Solids Struct., Volume 41 (2004), pp. 5863-5870

[14] A.A. Mirghasemi; L. Rothenburg; E.L. Matyas Influence of particle shape on engineering properties of assemblies of two-dimensional polygonal-shaped particles, Géotechnique, Volume 52 (2002) no. 3, pp. 209-217

[15] E. Azéma; F. Radjaï; R. Peyroux; G. Saussine Force transmission in a packing of pentagonal particles, Phys. Rev. E, Volume 76 (2007), p. 011301

[16] C. Nouguier-Lehon; B. Cambou; E. Vincens Influence of particle shape and angularity on the behaviour of granular materials: A numerical analysis, Int. J. Numer. Anal. Meth Geomech., Volume 27 (2003), pp. 1207-1226

[17] C. Nouguier-Lehon; E. Vincens; B. Cambou Structural changes in granular materials: The case of irregular polygonal particles, Int. J. Solids Struct., Volume 42 (2005), pp. 6356-6375

[18] A.A. Peña; R. García-Rojo; H.J. Herrmann Influence of particle shape on sheared dense granular media, Gran. Matter, Volume 9 (2007), pp. 279-291

[19] F. Alonso-Marroquín; S. Luding; H.J. Herrmann; I. Vardoulakis Role of anisotropy in the elastoplastic response of a polygonal packing, Phys. Rev. E, Volume 71 (2005), p. 051304

[20] J.J. Moreau Some numerical methods in multibody dynamics: Application to granular materials, Eur. J. Mech. A/Solids, Volume 13 (1994) no. 4-suppl., pp. 93-114

[21] M. Jean The non-smooth contact dynamics method, Comp. Meth. Appl. Mech. Eng., Volume 177 (1999), pp. 235-257

[22] J.J. Moreau Numerical aspects of the sweeping process, Comp. Meth. Appl. Mech. Eng., Volume 177 (1999), pp. 329-349

[23] F. Radjaï; V. Richefeu Contact Dynamics as a nonsmooth discrete element method, Mech. Mater., Volume 41 (2009), pp. 715-728

[24] P.A. Cundall; O.D.L. Strack A discrete numerical model for granular assemblies, Géotechnique, Volume 29 (1979), pp. 47-65

[25] G. Saussine; C. Cholet; P.E. Gautier; F. Dubois; C. Bohatier; J.J. Moreau Modelling ballast behaviour under dynamic loading, Part 1: A 2D polygonal discrete element method approach, Comp. Meth. Appl. Mech. Eng., Volume 195 (2005), pp. 19-22

[26] A. Taboada; N. Estrada Rock-soil avalanches: Theory and simulation, J. Geophys. Res., Volume 114 (2009), p. F03004

[27] B. Chetouane; F. Dubois; M. Vinches; C. Bohatier NSCD discrete element method for modelling masonry structures, Int. J. Num. Meth. Eng., Volume 64 (2005), pp. 65-94

[28] B. Maurin; P. Cañadas; H. Baudriller; P. Montcourrier; N. Bettache Mechanical model of cytoskeleton structuration during cell adhesion and spreading, J. Biomechanics, Volume 41 (2008), pp. 2036-2041

[29] C. Nouguier-Lehon; P. Dubujet; B. Cambou Analysis of granular material behaviour from two kinds of numerical modelling, Proceedings of the 15th ASCE Engineering Mechanics Conference, Columbia University, New York, 2002

[30] D. Kadau; D. Schwesig; J. Theuerkauf; D.E. Wolf Influence of particle elasticity in shear testers, Gran. Matter, Volume 8 (2006), pp. 35-40

[31] J.K. Mitchell; K. Soga Fundamentals of Soil Behavior, Wiley, 2005

[32] R. Cruz Hidalgo, I. Zuriguel, D. Maza, I. Pagonabarraga, Granular packings of elongated faceted particles deposited under gravity, J. Stat. Mech. (2010) P06025.

[33] A. Donev; F.H. Stillinger; P.M. Chaikin; S. Torquato Unusually dense crystal packings of ellipsoids, Phys. Rev. Lett., Volume 92 (2004), p. 255506

[34] A. Donev; R. Connelly; F.H. Stillinger; S. Torquato Underconstrained jammed packings of nonspherical hard particles: Ellipses and ellipsoids, Phys. Rev. E, Volume 75 (2007), p. 051304

[35] T.-T. Ng Particle shape effect on macro- and micro-behaviors of monodisperse ellipsoids, Int. J. Numer. Anal. Meth. Geomech., Volume 33 (2009), pp. 511-527

[36] G.D.R. MiDi On dense granular flows, Eur. Phys. J. E, Volume 14 (2004), pp. 341-365

[37] E. Azéma; F. Radjaï Stress–strain behavior and geometrical properties of packing of elongated particles, Phys. Rev. E, Volume 81 (2010), p. 051304

[38] E. Gerolymatou, F. Froiio, C. Nouguier-Lehon, Energy-rates for granular materials: Discrete characterization, in: Proceedings of the 9th International Congress on Mechanics, Limassol, Cyprus, 12–14 July 2010.

[39] K. Iwashita; M. Oda Micro-deformation mechanism of shear banding process based on modified distinct element method, Powder Technol., Volume 109 (2000), pp. 192-205

[40] A. Mohamed; M. Gutierrez Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials, Gran. Matter, Volume 12 (2010) no. 5, pp. 527-541 (Special Issue: IS-Shanghai 2010: International Symposium on Geomechanics and Geotechnics: From Micro to Macro, Shanghai, China, October 2010/Guest Edited by Mingjing Jiang and Fang Liu)

[41] M. Chaze, Effect of grain shape on the behaviour of granular materials in biaxial compression, in: COMGEO Conference, Juan-les-Pins, 29 April–1 May, 2009.

[42] B. Saint-Cyr, C. Voivret, J.-Y. Delenne, F. Radjai, P. Sornay, Effect of shape nonconvexity on the shear strength of granular media, in: M. Nakagawa, S. Luding (Eds.), Proceedings of Powders and Grains Conference, 13–17 July 2009, Golden, USA, pp. 389–392.

[43] K. Szarf, G. Combe, P. Villard, Influence of the grains shape on the mechanical behavior of granular materials, in: M. Nakagawa, S. Luding (Eds.), Proceedings of Powders and Grains Conference, 13–17 July 2009, Golden, USA, pp. 357–360.

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Modelling of volume change in granular materials in relation to their internal state

Eric Vincens; Yuhanis Yunus; Bernard Cambou

C. R. Méca (2010)


Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials

Jianqiu Tian; Enlong Liu; Lian Jiang; ...

C. R. Méca (2018)