[Modélisation des variations volumiques dans les matériaux granulaires prenant en compte leur état interne]
Des essais numériques ont été réalisés sur des échantillons composés de sphères rigides pour étudier le comportement des matériaux granulaires sur des chemins de chargement complexes, impliquant des chemins triaxiaux monotones ou cycliques alternés. Ces simulations, qui utilisent la Méthode aux Eléments Discrets (MED), mettent en relief le rôle concomitant de l'indice des vides et de l'anisotropie de structure dans le comportement de ces échantillons. Aussi, l'indice des vides et l'anisotropie de structure ont-ils été choisis comme variables pour décrire le comportement de l'état interne du matériau. Par la suite, un modèle élastoplastique de sols, CJS, a été utilisé pour étudier l'évolution du matériau à l'échelle de l'échantillon. Ce travail montre le chemin complexe suivi par certaines variables ou paramètres de modèle impliqués dans CJS au cours de ces simulations. Les simulations ont établi que ces paramètres de modèle, généralement des constantes dans CJS, doivent être modifiés selon la valeur des deux variables internes identifiées afin d'obtenir une description plus fine du comportement des matériaux granulaires sur des chemins de contraintes complexes.
Numerical simulations on samples composed of rigid spheres have been performed to study the behaviour of granular materials under complex stress paths involving peculiar triaxial monotonous stress paths and two-way cycling loading paths. These simulations using the Discrete Element Method (DEM), pointed out the concomitant role played by the void ratio and the anisotropy of fabric in the behaviour of these samples. Thus, the void ratio and the anisotropy of fabric have been chosen as internal variables for the description of the internal state of the material. An elastic-plastic model for soils, CJS, has been used to study the evolution of the material at the global scale. This work shows the complex path followed by some variables or key parameters involved in this model throughout simulations. Moreover, the parameters that are usually taken as constants in the CJS model definitely need to evolve with respect to the two internal variables in order to provide a precise prediction of the behaviour of granular materials throughout complex loadings.
Mot clés : Milieux granulaires, MED, Anisotropie, État caractéristique, Cycle, Écrouissage
Eric Vincens 1 ; Yuhanis Yunus 1 ; Bernard Cambou 1
@article{CRMECA_2010__338_10-11_615_0, author = {Eric Vincens and Yuhanis Yunus and Bernard Cambou}, title = {Modelling of volume change in granular materials in relation to their internal state}, journal = {Comptes Rendus. M\'ecanique}, pages = {615--626}, publisher = {Elsevier}, volume = {338}, number = {10-11}, year = {2010}, doi = {10.1016/j.crme.2010.10.002}, language = {en}, }
TY - JOUR AU - Eric Vincens AU - Yuhanis Yunus AU - Bernard Cambou TI - Modelling of volume change in granular materials in relation to their internal state JO - Comptes Rendus. Mécanique PY - 2010 SP - 615 EP - 626 VL - 338 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2010.10.002 LA - en ID - CRMECA_2010__338_10-11_615_0 ER -
%0 Journal Article %A Eric Vincens %A Yuhanis Yunus %A Bernard Cambou %T Modelling of volume change in granular materials in relation to their internal state %J Comptes Rendus. Mécanique %D 2010 %P 615-626 %V 338 %N 10-11 %I Elsevier %R 10.1016/j.crme.2010.10.002 %G en %F CRMECA_2010__338_10-11_615_0
Eric Vincens; Yuhanis Yunus; Bernard Cambou. Modelling of volume change in granular materials in relation to their internal state. Comptes Rendus. Mécanique, Volume 338 (2010) no. 10-11, pp. 615-626. doi : 10.1016/j.crme.2010.10.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.10.002/
[1] A sand model with state dependent parameter, Géotechnique, Volume 52 (2002) no. 3, pp. 173-186
[2] A state dependent multi-mechanism model for sands, Géotechnique, Volume 53 (2003) no. 4, pp. 407-420
[3] State-dependent strength of sands from the perspective of unified modelling, Journal of Geotechnical and Geoenvironmental Engineering, Volume 130 (2004) no. 2, pp. 186-198
[4] An elasto-plastic model for granular materials with microstructural consideration, International Journal of Solids and Structures, Volume 42 (2005), pp. 4258-4277
[5] Numerical simulations of assemblies of two-dimensional polygon-shaped particles and effects of confining pressure on shear strains, Soils and Foundations, Volume 37 (1997) no. 3, pp. 43-52
[6] Features of static pressure in dense granular media, Granular Matter, Volume 1 (1998) no. 1, pp. 3-8
[7] Numerical simulations of deviatoric shear deformation of granular media, Géotechnique, Volume 50 (2000) no. 1, pp. 43-53
[8] Influence of particle shape on engineering properties of assemblies of two-dimensional polygon-shaped particles, Géotechnique, Volume 52 (2002) no. 3, pp. 209-217
[9] Structural changes in granular materials: The case of irregular polygonal particles, International Journal of Solids and Structures, Volume 42 (2005) no. 24–25, pp. 6356-6375
[10] Influence of relative density on granular materials behavior: DEM simulations of triaxial tests, Granular Matter, Volume 11 (2009), pp. 221-236
[11] Role of anisotropy in the elastoplastic response of a polygonal packing, Physical Review E, Volume 71 (2005), p. 051304
[12] An assessment of plasticity theories for modeling the incrementally nonlinear behavior of granular soils, Journal of Engineering Mathematics, Volume 52 (2005), pp. 265-291
[13] F. Froiio, J.-N. Roux, An assessment of plasticity theories for modeling the incrementally non-linear behavior of granular soils, in: J. Goddard, J.T. Jenkins, P. Giovine (Eds.), IUTAM-ISIMM Symposium on Mathematical Modelling and Physical Instances of Granular Flows, 2010, pp. 183–197.
[14] Analytical study of induced anisotropy in idealized granular materials, Géotechnique, Volume 39 (1989) no. 4, pp. 601-614
[15] Contact forces in anisotropic frictional granular materials, International Journal of Solids and Structures, Volume 40 (2003) no. 13–14, pp. 3537-3556
[16] On the fabric tensor of polydisperse granular materials in 2D, International Journal of Solids and Structures, Volume 41 (2004), pp. 2563-2580
[17] Macro- and micro-behaviors of granular materials under different sample preparation methods and stress paths, International Journal of Solids and Structures, Volume 41 (2004), pp. 5871-5884
[18] Y. Yunus, Modélisation discrète du comportement cyclique des matériaux granulaires (in French), PhD, Ecole Centrale de Lyon, 2008.
[19] Numerical local analysis of relevant internal variables for constitutive modelling of granular materials, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 34 (2010) no. 11, pp. 1101-1123
[20] A constitutive model for granular materials based on two plasticity mechanisms, Constitutive Equations for Granular Non-cohesive Soils, Saada & Bianchini, Balkema, Rotterdam, 1989, pp. 149-167
[21] M. Maleki, B. Cambou, M. Farsi, P. Dubujet, An elastoplastic–viscoplastic model for soils. Numerical models in geomechanics, in: Proceedings of the 7th International Symposium, Graz, September 1999, pp. 15–20.
[22] A discrete numerical model for granular assemblies, Géotechnique, Volume 29 (1979), pp. 47-75
[23] Distribution orientée dans un milieu granulaire et leurs représentations, Journées de mécanique aléatoire appliquée à la construction, éditions LCPC, 1986, pp. 199-204
[24] A 3D fourth order fabric tensor approach of anisotropy in granular media, Computational Materials Science, Volume 46 (2009) no. 4, pp. 869-880
[25] Characteristics of cohesionless soils affecting the stability of slopes and earth fills, Journal of the Boston Society of Civil Engineering ( January 1936 ), pp. 13-32
[26] Yielding of clays in states wetter than critical, Géotechnique, Volume 13 (1963) no. 3, pp. 211-240
[27] The steady state of deformation, Journal of the Geoenvironmental Engineering Division ASCE, Volume 105 (1981) no. 2, pp. 201-255
[28] Stress path and steady state, Canadian Geotechnical Journal, Volume 27 (1990), pp. 1-7
[29] M.P. Luong, Stress strain aspects of cohesionless soils under cyclic and transient loading, in: Proceedings of the International Symposium on Soils under Cyclic and Transient Loading, Swansea, 1980, pp. 353–376.
[30] Constant volume friction angle of granular materials, Canadian Geotechnical Journal, Volume 25 (1988), pp. 50-55
[31] On stress–dilatancy equations of sand subjected to cyclic loading, Soils and Foundations, Volume 29 (1989) no. 1, pp. 65-81
[32] Torsion shear tests on cyclic stress–dilatancy relationship of sand, Soils and Foundations, Volume 42 (2002) no. 1, pp. 105-119
[33] E. Vincens, C. Nouguier-Lehon, B. Cambou, Cyclic behavior of a two dimensional polygonal-shaped material, in: 16th ALERT Geomaterials Workshop, Aussois, October 10–12, 2005, http://alert.epfl.ch/Archive/ALERT2005/ALERTworkshop2005.html.
Cité par Sources :
Commentaires - Politique