Comptes Rendus
Determination of thermal diffusion coefficient of nanofluid: Fullerene–toluene
Comptes Rendus. Mécanique, Volume 339 (2011) no. 5, pp. 329-334.

Thermodiffusion coefficient at fullerene mass concentrations of 0.05%, 0.1%, 0.15%, and 0.2% was established for pure fullerene (C60) diluted in toluene solutions. For this, the thermogravitational technique has been used in planar configuration with 4 extraction points. The determination of the concentration distribution along the column in steady state is determined by the method of analysis based on density measurements. In order to determine the thermal diffusion coefficient all thermophysical properties such as density, viscosity, thermal expansion coefficient and mass expansion coefficients were determined. All these studies coincide with the importance of the knowledge of the thermophysics and transport properties of the nanofluids to develop new applications and to optimize the existing ones.

Publié le :
DOI : 10.1016/j.crme.2011.03.010
Mots clés : Fullerene, Nanofluid, Thermodiffusion, Biological, Thermogravitational technique, Drug delivery
Alain Martin 1 ; M. Mounir Bou-Ali 1

1 MGEP Mondragon Goi Eskola Politeknikoa, Mechanical and Industrial Manufacturing Department, Loramendi 4, Apdo. 23, 20500 Mondragon, Spain
@article{CRMECA_2011__339_5_329_0,
     author = {Alain Martin and M. Mounir Bou-Ali},
     title = {Determination of thermal diffusion coefficient of nanofluid: {Fullerene{\textendash}toluene}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {329--334},
     publisher = {Elsevier},
     volume = {339},
     number = {5},
     year = {2011},
     doi = {10.1016/j.crme.2011.03.010},
     language = {en},
}
TY  - JOUR
AU  - Alain Martin
AU  - M. Mounir Bou-Ali
TI  - Determination of thermal diffusion coefficient of nanofluid: Fullerene–toluene
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 329
EP  - 334
VL  - 339
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2011.03.010
LA  - en
ID  - CRMECA_2011__339_5_329_0
ER  - 
%0 Journal Article
%A Alain Martin
%A M. Mounir Bou-Ali
%T Determination of thermal diffusion coefficient of nanofluid: Fullerene–toluene
%J Comptes Rendus. Mécanique
%D 2011
%P 329-334
%V 339
%N 5
%I Elsevier
%R 10.1016/j.crme.2011.03.010
%G en
%F CRMECA_2011__339_5_329_0
Alain Martin; M. Mounir Bou-Ali. Determination of thermal diffusion coefficient of nanofluid: Fullerene–toluene. Comptes Rendus. Mécanique, Volume 339 (2011) no. 5, pp. 329-334. doi : 10.1016/j.crme.2011.03.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.03.010/

[1] H.W. Kroto; J.R. Heath; S.C. OʼBrien; R.F. Curl; R.E. Smalley C60: Buckminsterfullerene, Nature, Volume 318 (1985), p. 162

[2] L. Becker; T.E. Bunch Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite, Meteorit. Planet. Sci., Volume 32 (1997) no. 4, pp. 479-487

[3] S. Utsunomiya; K.A. Jensen; G.J. Keeler; R.C. Ewing Uraninite and fullerene in atmospheric particles, Environ. Sci. Technol., Volume 36 (2002), pp. 4943-4947

[4] A. Katz; M. Redlich; L. Rapoport; H.D. Wagner; R. Tenne Self-lubricating coatings containing fullerene-like WS2 nanoparticles for orthodontic wires and other possible medical applications, Tribol. Lett., Volume 21 (2006) no. 2, pp. 135-139

[5] O. Gunnarsson Superconductivity in fullerides, Rev. Mod. Phys., Volume 69 (1997), pp. 203-210

[6] R. Signorini; M. Zerbetto; M. Meneghetti; R. Bozio; M. Maggini; C.D. Faveri; M. Prato; G. Scorrano Fullerene derivatives embedded in sol–gel materials for optical limiting (Zakya H. Kafafi, ed.), Fullerene and Photonics III, vol. 2854, The International Society for Optical Engineering, 1996, pp. 130-139

[7] P. Scharff; K. Risch; L. Carta-Abelmann; I.M. Dmytruk; M.M. Bilyi; O.A. Golub; A.V. Khavryuchenko; E.V. Buzaneva; V.L. Aksenov; M.V. Avdeev; Yu.I. Prylutskyy; S.S. Durov Structure of C60 fullerene in water: Spectroscopic data, Carbon, Volume 42 (2004), pp. 1203-1206

[8] R. Sijbesma; G. Srdanov; F. Wudl; J.A. Castoro; C. Wilkins; S.H. Friedman; D.L. DeCamp; G.L. Kenyon Synthesis of a fullerene derivative for the inhibition of HIV enzymes, J. Am. Chem. Soc., Volume 115 (1993), pp. 6510-6512

[9] S.H. Friedman; D.L. DeCamp; R.P. Sijbesma; G. Srdanov; F. Wudl; G.L. Kenyon J. Am. Chem. Soc., 115 (1993), pp. 6506-6509

[10] L. Qingnuan; X. Yan; Z. Xiaodong; L. Ruili; D. Qieqie; S. Xiaoguang; C. Shaoliang; L. Wenxin Preparation of 99mTc-C60(OH)x and its biodistribution studies, Nucl. Med. Biol., Volume 29 (2002), pp. 707-710

[11] M. Mikawa; H. Kato; M. Okumura; M. Narazaki; Y. Kanazawa; N. Miwa; H. Shinohara Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents, Bioconjugate Chem., Volume 12 (2001), pp. 510-514

[12] A. Miyamoto; H. Okimoto; H. Shinohara; Y. Shibamoto Development of water-soluble metallofullerenes as X-ray contrast media, Eur. Radiol., Volume 16 (2006), pp. 1050-1053

[13] J.D. Fortner; D.Y. Lyon; C.M. Sayes; A.M. Boyd; J.C. Falkner; E.M. Hotze; L.B. Alemany; Y.J. Tao; W. Guo; K.D. Ausman; V.L. Colvin; J.B. Hughes C60 in water: Nanocrystal formation and microbial response, Environ. Sci. Technol., Volume 39 (2005), pp. 4307-4316

[14] W. Köhler; B. Müller Soret and mass diffusion coefficients of toluene/n-hexane mixtures, J. Chem. Phys., Volume 103 (1995), pp. 4367-4370

[15] M.M. Bou-Ali; O. Ecenarro; J.A. Madariaga; C.M. Santamaria; J.J. Valencia Thermogravitational measurement of the Soret coefficient of liquid mixtures, J. Phys.: Condens. Matter, Volume 10 (1998), pp. 3321-3331

[16] J.K. Platten; M.M. Bou-Ali; P. Costeseque; J.K. Dutrieux; W. Köhler; C. Leppla; S. Wiegand; G. Wittko Benchmark values for the Soret, thermal diffusion and diffusion coefficients of three binary organic liquid mixtures, Philos. Mag., Volume 83 (2003), pp. 1965-1971

[17] M.E. Schimpf; J.C. Giddings Characterization of thermal diffusion in polymer solutions by thermal field-flow fractionation: Dependence on polymer an solvent parameters, J. Polym. Sci. B, Volume 27 (1989), pp. 1317-1332

[18] P. Blanco; P. Polyakov; M.M. Bou-Ali; S. Wiegand Thermal diffusion and molecular diffusion values for some alkane mixtures: A comparison between thermogravitational column and thermal diffusion forced Rayleigh scattering, J. Phys. Chem. B, Volume 112 (2008), pp. 8340-8345

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Microfluidic separation process by the Soret effect in biological fluids

Alain Martin; M. Mounir Bou-Ali; Haritz Barrutia; ...

C. R. Méca (2011)


Electronic structure of IPR and non-IPR endohedral metallofullerenes: Connecting orbital and topological rules

Núria Alegret; Marc Mulet-Gas; Xavier Aparicio-Anglès; ...

C. R. Chim (2012)