Comptes Rendus
Internal degrees of freedom, molecular symmetry and thermodiffusion
Comptes Rendus. Mécanique, Thermodiffusion and coupled phenomena, Volume 339 (2011) no. 5, pp. 335-341.

Using the thermodynamic expression for the Soret coefficient for diluted mixtures, expressed through the temperature derivative of the molecule chemical potential at the constant pressure, statistical mechanics is applied to relate this expression to the microscopic molecular parameters. When the contribution of the internal degrees of freedom in molecules is accounted for in the calculations, the results are equivalent to previous approaches, adding new terms to the Soret coefficient. These terms are related to the differences in molecular vibration and rotation between the solute and solvent molecules. These “internal” contributions to molecular thermodiffusion explain the isotopic effect observed in molecular systems. The theory describes most of the experimental data on the thermodiffusion of isolated molecules placed in non-electrolyte liquids. The approach also reveals a strong dependence of molecular thermodiffusion on molecular symmetry.

Published online:
DOI: 10.1016/j.crme.2011.03.011
Keywords: Molecular rotation, Molecular symmetry, Thermodiffusion, Isotopic effect

Semen N. Semenov 1; Martin E. Schimpf 2

1 Institute of Biochemical Physics RAS, Kosygin Street 4, 117977 Moscow, Russia
2 Department of Chemistry, Boise State University, Boise, ID 83725, USA
@article{CRMECA_2011__339_5_335_0,
     author = {Semen N. Semenov and Martin E. Schimpf},
     title = {Internal degrees of freedom, molecular symmetry and thermodiffusion},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {335--341},
     publisher = {Elsevier},
     volume = {339},
     number = {5},
     year = {2011},
     doi = {10.1016/j.crme.2011.03.011},
     language = {en},
}
TY  - JOUR
AU  - Semen N. Semenov
AU  - Martin E. Schimpf
TI  - Internal degrees of freedom, molecular symmetry and thermodiffusion
JO  - Comptes Rendus. Mécanique
PY  - 2011
SP  - 335
EP  - 341
VL  - 339
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2011.03.011
LA  - en
ID  - CRMECA_2011__339_5_335_0
ER  - 
%0 Journal Article
%A Semen N. Semenov
%A Martin E. Schimpf
%T Internal degrees of freedom, molecular symmetry and thermodiffusion
%J Comptes Rendus. Mécanique
%D 2011
%P 335-341
%V 339
%N 5
%I Elsevier
%R 10.1016/j.crme.2011.03.011
%G en
%F CRMECA_2011__339_5_335_0
Semen N. Semenov; Martin E. Schimpf. Internal degrees of freedom, molecular symmetry and thermodiffusion. Comptes Rendus. Mécanique, Thermodiffusion and coupled phenomena, Volume 339 (2011) no. 5, pp. 335-341. doi : 10.1016/j.crme.2011.03.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2011.03.011/

[1] S.R. De Groot Thermodynamics of Irreversible Processes, North-Holland Publishing Company, Amsterdam, 1952

[2] S.R. De Groot; P. Mazur Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962

[3] D. Kondepudi; I. Prigogine Modern Thermodynamics, Wiley, New York, 1999

[4] N.-Y.R. Ma; A.L. Beyerlein The 2H thermal diffusion isotope effect in benzene and methanol, J. Chem. Phys., Volume 78 (1983), p. 7010

[5] W.M. Rutherford Effect of mass distribution on the isotopic thermal diffusion of benzene, J. Chem. Phys., Volume 86 (1987), p. 5217

[6] W.M. Rutherford Separation of isotopically substituted liquids in the thermal diffusion column, J. Chem. Phys., Volume 59 (1973), p. 6061

[7] W.M. Rutherford Effect of carbon and hydrogen isotopic substitutions on the thermal diffusion of benzene, J. Chem. Phys., Volume 90 (1989), p. 602

[8] W.M. Rutherford Effect of mass distribution on the isotopic thermal diffusion of substituted benzenes, J. Chem. Phys., Volume 81 (1984), p. 6136

[9] W.M. Rutherford Isotopic thermal diffusion of carbon disulfide in the liquid phase, J. Chem. Phys., Volume 86 (1987), p. 397

[10] J. Schirdewahn; A. Klemm; L. Waldmann Thermodiffusion in D2-HT und anderen Wasserstoffgemischen, Z. Naturforsch., Volume 16A (1960), p. 133

[11] L. Waldmann Handbuch der Physik (S. Flügge, ed.), Springer, Berlin, 1958, p. 12

[12] B. Hafskjold Thermal Nonequilibrium Phenomena in Fluid Mixtures (W. Köhler; S. Wiegand, eds.), Springer, Heidelberg, 2002

[13] B. Hafskjold; T. Ikeshoji; S.K. Ratkje On the molecular mechanism of thermal diffusion in liquids, Mol. Phys., Volume 80 (1993), p. 1389

[14] D. Reith; F. Müller-Plathe On the nature of thermal diffusion in binary Lennard-Jones liquids, J. Chem. Phys., Volume 112 (2000), p. 2436

[15] P. Bordat; D. Reith; F. Müller-Plathe The influence of interaction details on the thermal diffusion in binary Lennard-Jones liquids, J. Chem. Phys., Volume 115 (2001), p. 8978

[16] G. Galliero; B. Duguay; J.-P. Caltagirone; F. Montel Thermal diffusion sensitivity to the molecular parameters of a binary equimolar mixture, a non-equilibrium molecular dynamics approach, Fluid Phase Equil., Volume 208 (2003), p. 171

[17] G. Galliero; B. Duguay; J.-P. Caltagirone; F. Montel On thermal diffusion in binary and ternary mixtures by nonequilibrium molecular dynamics, Philos. Mag., Volume 83 (2003), p. 2097

[18] C. Debuschewitz; W. Köhler Molecular origin of thermal diffusion in benzene + cyclohexane mixtures, Phys. Rev. Lett., Volume 87 (2001), p. 055901

[19] G. Wittko; W. Köhler Universal isotope effect in thermal diffusion of mixtures containing cyclohexane and cyclohexane-d12, J. Chem. Phys., Volume 123 (2005), p. 014506

[20] S.N. Semenov Statistical thermodynamic expression for the Soret coefficient, EPL, Volume 90 (2010), p. 56002

[21] S.N. Semenov; M.E. Schimpf On thermodynamic approach to mass transport, Thermal Nonequilibrium, Lecture Notes of 8th International Meeting on Thermodiffusion, 2008, pp. 109-116 (ISBN: 978-3-89336-523-4)

[22] S.N. Semenov; M.E. Schimpf Mass transport thermodynamics in nonisothermal molecular liquid mixtures, Phys. Usp., Volume 52 (2009), p. 1045

[23] J.K.G. Dhont; S. Wiegand; S. Duhr; D. Braun Thermodiffusion of charged colloids: Single-particle diffusion, Langmuir, Volume 23 (2007), p. 1674

[24] I. Kirkwood; E. Boggs The radial distribution function in liquids, J. Chem. Phys., Volume 10 (1942), p. 394

[25] I.Z. Fisher Statistical Theory of Liquids, Chicago Univ., 1964

[26] L.D. Landau; E.M. Lifshitz Statistical Physics (E.M. Lifshitz; L.P. Pitaevskii, eds.), Pergamon Press, 1980 (Part 1, Chapter IV, English translation)

[27] E. Bringuier; A. Bourdon Colloid transport in non-uniform temperature, Phys. Rev. E, Volume 67 (2003), p. 011404

[28] E. Bringuier; A. Bourdon Colloid thermophoresis as a non-proportional response, J. Non-Equil. Thermodyn., Volume 32 (2007), p. 221

[29] E. Bringuier; A. Bourdon; T. Bickel; S. de Boitex Thermodiffusion of charged micelles, Phys. Rev. Lett., Volume 95 (2005), p. 208301

[30] M.E. Schimpf; S.N. Semenov Symmetric diffusion equations, barodiffusion, and cross-diffusion in concentrated liquid mixtures, Phys. Rev. E, Volume 70 (2004), p. 031202

[31] S.N. Semenov; M.E. Schimpf Molecular thermodiffusion (thermophoresis) in liquid mixtures, Phys. Rev. E, Volume 72 (2005), p. 041202

[32] S.N. Semenov; M.E. Schimpf Mechanism of polymer thermophoresis in nonaqueous solvents, J. Phys. Chem. B, Volume 104 (2000), p. 9935

[33] J.G. Kirkwood Order and disorder in liquid solutions, J. Phys. Chem., Volume 43 (1939), p. 97

[34] J.L. Anderson Colloid transport by interfacial forces, Annu. Rev. Fluid Mech., Volume 21 (1989), p. 61

[35] J.C. Giddings; P.M. Shiundu; S.N. Semenov Thermophoresis of metal particles in a liquid, J. Colloid Interface Sci., Volume 176 (1995), p. 454

[36] A. Parola; R. Piazza Particle thermophoresis in liquids, Eur. Phys. J., Volume 15 (2004), p. 255

[37] L.D. Landau; E.M. Lifshitz Statistical Physics (E.M. Lifshitz; L.P. Pitaevskii, eds.), Pergamon Press, 1980 (Part 1, Chapter IX, English translation)

[38] S. Ross; I.D. Morrison Colloidal Systems and Interfaces, Wiley, New York, 1988

[39] F. Brochard; P. de Gennes Soret effect of flexible macromolecules, C. R. Seances Acad. Sci., Ser. 2, Volume 293 (1981), p. 1025

[40] S. Iacopini; R. Rusconi; R. Piazza The “macromolecular tourist”: universal temperature dependence of thermal diffusion in aqueous colloidal suspensions, Eur. Phys. J. E, Volume 19 (2006), p. 59

Cited by Sources:

Comments - Policy