A three-dimensional solution of the mixed boundary value problem posed in Potential Theory is proposed. The support of the Neumann condition is conformally mapped onto a unit disk. On that disk, the solution is broken down as Fourier series of azimuthal angle and linear combinations of known functions of the radial coordinate. It is shown that the whole problem reduces highly nonlinear equations for the coefficients of the mapping function. The present method of solution is to be applied to hydrodynamic impact problem.
Accepted:
Published online:
Yves-Marie Scolan 1; Alexander A. Korobkin 2
@article{CRMECA_2012__340_10_702_0, author = {Yves-Marie Scolan and Alexander A. Korobkin}, title = {Mixed boundary value problem in {Potential} {Theory:} {Application} to the hydrodynamic impact {(Wagner)} problem}, journal = {Comptes Rendus. M\'ecanique}, pages = {702--705}, publisher = {Elsevier}, volume = {340}, number = {10}, year = {2012}, doi = {10.1016/j.crme.2012.09.006}, language = {en}, }
TY - JOUR AU - Yves-Marie Scolan AU - Alexander A. Korobkin TI - Mixed boundary value problem in Potential Theory: Application to the hydrodynamic impact (Wagner) problem JO - Comptes Rendus. Mécanique PY - 2012 SP - 702 EP - 705 VL - 340 IS - 10 PB - Elsevier DO - 10.1016/j.crme.2012.09.006 LA - en ID - CRMECA_2012__340_10_702_0 ER -
%0 Journal Article %A Yves-Marie Scolan %A Alexander A. Korobkin %T Mixed boundary value problem in Potential Theory: Application to the hydrodynamic impact (Wagner) problem %J Comptes Rendus. Mécanique %D 2012 %P 702-705 %V 340 %N 10 %I Elsevier %R 10.1016/j.crme.2012.09.006 %G en %F CRMECA_2012__340_10_702_0
Yves-Marie Scolan; Alexander A. Korobkin. Mixed boundary value problem in Potential Theory: Application to the hydrodynamic impact (Wagner) problem. Comptes Rendus. Mécanique, Volume 340 (2012) no. 10, pp. 702-705. doi : 10.1016/j.crme.2012.09.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.09.006/
[1] Über Stoss- und Gleitvorgänge an der Oberfläche von Flüssigkeiten, ZAMM, Volume 12 (1932), pp. 193-215
[2] Formulation of penetration problem as a variational inequality, Dinamika Sploshn. Sredy, Volume 58 (1982), pp. 73-79
[3] Incompressible water-entry problems at small deadrise angles, J. Fluid Mech., Volume 222 (1991), pp. 215-230
[4] Sur un problème mixte relatif à lʼéquation de Laplace, Bull. Acad. Sci. Cracovie, Classe Sci. Math. Nat., Sér. A (1910), pp. 313-344
[5] Conformal Mapping, Dover Publications, New York, 1975
[6] Three-dimensional theory of water impact. Part 2. Linearized Wagner problem, J. Fluid Mech., Volume 549 (2006), pp. 343-373
[7] Boundary integral equations for mixed boundary value problems in , Math. Nachr., Volume 134 (1987), pp. 21-53
[8] Y.-M. Scolan, A.A. Korobkin, Towards a solution of the three-dimensional Wagner problem, in: 23rd International Workshop on Water Waves and Floating Bodies, Korea, April 2008.
[9] Mixed Boundary Value Problems in Potential Theory, J. Wiley & Sons, Inc., 1966
Cited by Sources:
Comments - Policy