[Simulation aux grandes échelles des instabilités de combustion dans un brûleur de longueur variable]
Cet article présente la simulation dʼun injecteur expérimental de type moteur-fusée dont les propriétés acoustiques peuvent varier continûment grâce à un tube dʼinjection de longueur variable. Des simulations aux grandes échelles (LES) sont réalisées à lʼaide du code AVBP. Un mécanisme de stabilisation de la flamme original montrant le rôle important de la recirculation de gaz chauds en entrée de chambre est observé. Un point de fonctionnement instable est ensuite choisi pour étudier le mécanisme de lʼinstabilité. Les simulations numériques sont comparées aux mesures du banc dʼessai en termes de fréquence de lʼinstabilité et de structure du mode instable. Une simulation 2D axi-symétrique est comparée à une simulation 3D avec pour objectif de tester lʼhypothèse de symétrie pour la prédiction de lʼécoulement moyen et instationnaire de cette configuration. Bien que la description en 2D dʼun coulement turbulent soit une simplification importante, pour cette configuration et dans le cas du point de fonctionnement choisi, le calcul axi-symétrique reproduit qualitativement certaines caractéristiques de lʼinstabilité.
This article presents a simulation of a model rocket combustor with continuously variable acoustic properties thanks to a variable-length injector tube. Fully compressible Large-Eddy Simulations are conducted using the AVBP code. An original flame stabilization mechanism is uncovered where the recirculation of hot gases in the corner recirculation zone creates a triple flame structure. An unstable operating point is then chosen to investigate the mechanism of the instability. The simulations are compared to experimental results in terms of frequency and mode structure. Two-dimensional axi-symmetric computations are compared to full 3D simulations in order to assess the validity of the axi-symmetry assumption for the prediction of mean and unsteady features of this flow. Despite the inaccuracies inherent to the 2D description of a turbulent flow, for this configuration and the particular operating point investigated, the axi-symmetric simulation qualitatively reproduces some features of the instability.
Mot clés : Instabilités de combustion, Simulation aux Grandes Echelles, Moteur-fusée
Romain Garby 1, 2 ; Laurent Selle 1, 2 ; Thierry Poinsot 1, 2
@article{CRMECA_2013__341_1-2_220_0, author = {Romain Garby and Laurent Selle and Thierry Poinsot}, title = {Large-Eddy {Simulation} of combustion instabilities in a variable-length combustor}, journal = {Comptes Rendus. M\'ecanique}, pages = {220--229}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.10.020}, language = {en}, }
TY - JOUR AU - Romain Garby AU - Laurent Selle AU - Thierry Poinsot TI - Large-Eddy Simulation of combustion instabilities in a variable-length combustor JO - Comptes Rendus. Mécanique PY - 2013 SP - 220 EP - 229 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.10.020 LA - en ID - CRMECA_2013__341_1-2_220_0 ER -
Romain Garby; Laurent Selle; Thierry Poinsot. Large-Eddy Simulation of combustion instabilities in a variable-length combustor. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 220-229. doi : 10.1016/j.crme.2012.10.020. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.020/
[1] Turbulent premixed flames and sound generation, Combust. Sci. Technol., Volume 78 (1991), pp. 147-155
[2] D.J. Harrje, F.H. Reardon, Liquid propellant rocket instability, Technical Report SP-194, NASA, 1972.
[3] Unsteady Motions in Combustion Chambers for Propulsion Systems, NATO Research and Technology Organization, 2006
[4] A parametric acoustic instability in premixed flames, J. Fluid Mech., Volume 231 (1991), pp. 529-543
[5] S. Candel, D. Durox, T. Schuller, Flame interactions as a source of noise and combustion instabilities, in: 10th AIAA/CEAS Aeroacoustics Conference – AIAA 2004-2928, 2004.
[6] Compressible large-eddy simulation of turbulent combustion in complex geometry on unstructured meshes, Combust. Flame, Volume 137 (2004) no. 4, pp. 489-505
[7] Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and large eddy simulations, Combust. Flame, Volume 141 (2005), pp. 40-54
[8] Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling, American Institute of Aeronautics and Astronautics, 2005
[9] A generalized model of acoustic response of turbulent premixed flame and its application to gas-turbine combustion instability analysis, Combust. Sci. Technol., Volume 117 (2005), pp. 1109-1150
[10] Large eddy simulation of turbulent combustion, Annu. Rev. Fluid Mech., Volume 38 (2006), pp. 453-482
[11] Unsteady flame and flow field interaction of a premixed model gas turbine burner, Proc. Combust. Inst., Volume 31 (2007), pp. 3197-3205
[12] Investigation of azimuthal staging concepts in annular gas turbines, Combust. Theory Model., Volume 15 (2011) no. 5, pp. 585-606
[13] Large-eddy simulations of combustion instability in an axisymmetric ramjet combustor, Combust. Sci. Technol., Volume 75 (1991) no. 1–3, pp. 53-72
[14] Sankaran Venkateswaran, Jeffrey Grenda, Charles L. Merkle, Computational fluid dynamic analysis of liquid rocket combustion instability, in: 10th AIAA Computational Fluid Dynamics Conference, Honolulu, HI, June 1991.
[15] Modeling high-pressure mixing and combustion processes in liquid rocket engines, J. Prop. Power, Volume 14 (1998) no. 5, pp. 843-857
[16] Mixing and combustion of cryogenic oxygen–hydrogen shear-coaxial jet flames at supercritical pressure, Combust. Sci. Technol., Volume 178 (2006) no. 1–3, pp. 229-252
[17] Cryogenic fluid jets and mixing layers in transcritical and supercritical environments, Combust. Sci. Technol., Volume 178 (2006), pp. 1-3
[18] Large-Eddy Simulation of oxygen/methane flames under transcritical conditions, Proc. Combust. Inst., Volume 33 (2011) no. 1, pp. 1383-1390
[19] Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner, J. Fluid Mech., Volume 570 (2007), pp. 17-46
[20] T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, third edition, www.cerfacs.fr/elearning, 2011.
[21] Large eddy simulation of self-excited azimuthal modes in annular combustors, Proc. Combust. Inst., Volume 32 (2009), pp. 2909-2916
[22] LES of a multi-burner annular gas turbine combustor, Flow Turbul. Combust., Volume 84 (2010), pp. 543-564
[23] Y.C. Yu, L.A. OʼHara, J.C. Sisco, W.E. Anderson, Experimental study of high-frequency combustion instability in a continuously variable resonance combustor, in: 47th AIAA Aerospace Sciences Meeting, Orlando, Florida, January 2009.
[24] Examination of mode shapes in an unstable model combustor, J. Sound Vib., Volume 330 (2011) no. 1, pp. 61-74
[25] Spontaneous longitudinal combustion instability in a continuously-variable resonance combustor, J. Prop. Power, Volume 28 (2012) no. 5, pp. 876-887
[26] Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, J. Comput. Phys., Volume 202 (2005) no. 2, pp. 710-736
[27] Systems of conservation laws, Comm. Pure Appl. Math., Volume 13 (1960), pp. 217-237
[28] General circulation experiments with the primitive equations: 1. The basic experiment, Mon. Weather Rev., Volume 91 (1963), pp. 99-164
[29] Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion, Proc. of the Summer Program, Center for Turbulence Research, NASA Ames/Stanford Univ., 2000, pp. 157-168
[30] A power-law wrinkling model for LES of premixed turbulent combustion: Part I – Non-dynamic formulation and initial tests, Combust. Flame, Volume 131 (2002), pp. 159-180
[31] A two-step chemical scheme for Large-Eddy Simulation of kerosene–air flames, Combust. Flame, Volume 157 (2010) no. 7, pp. 1364-1373
[32] G. Staffelbach, T. Poinsot, High performance computing for combustion applications, in: Super Computing 2006, Tampa, Florida, USA, 2006.
[33] LES of an ignition sequence in a gas turbine engine, Combust. Flame, Volume 154 (2008) no. 1–2, pp. 2-22
[34] Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992) no. 1, pp. 104-129
[35] Experimental and numerical study of a triple flame, Combust. Flame, Volume 116 (1998), pp. 192-206
[36] DNS study of stabilisation of turbulent triple flames by hot gases, Proc. Combust. Inst., Volume 31 (2007) no. 1, pp. 1649-1656
[37] Thermoacoustic instabilities: should the Rayleigh criterion be extended to include entropy changes?, Combust. Flame, Volume 142 (2005), pp. 153-159
Cité par Sources :
Commentaires - Politique