[Simulations aux grandes échelles des instabilités thermo-acoustiques dans un brûleur partiellement prémélangé méthane/air]
Numerical simulations were performed using Large Eddy Simulation (LES) and acoustic analysis tools to study thermo-acoustic instabilities in a methane/air academic burner installed at the University of Twente (The Netherlands). It operates under fuel-lean partially premixed conditions at atmospheric pressure, and was built to study thermo-acoustic instabilities in conditions representative of gas turbine Lean Premixed systems: gaseous fuel is injected upstream of the combustor and has a limited time to mix with air. Even though the objective is to burn in a premixed mode, the actual regime corresponds to a partially premixed flame where strong equivalence ratio variations are created especially during combustion instabilities. Capturing these modes with LES is a challenge: here, simulations for both stable and unstable regimes are performed. In the unstable case, the limit cycle oscillations (LCO) are characterized and compared to experimental results. Reasonable agreement is found between simulations and experiments.
Des simulations numériques sont effectuées avec des outils dʼanalyse acoustique et de Simulation aux Grandes Échelles (SGE) pour étudier des instabilités thermo-acoustiques dans un brûleur académique méthane/air installé à lʼUniversité de Twente (Pays Bas). Le dispositif fonctionne aux régimes pauvres à pression atmosphérique et a été conçu pour être enclin aux instabilités thermo-acoustiques. Cʼest une configuration proche des systèmes LPP installés dans les turbines à gaz : le fuel est injecté pur en amont de la chambre mais a peu de temps pour se mélanger avec lʼair. Le système fonctionne donc avec de grandes variations de richesse, surtout pendant les modes instables. Prévoir ces modes avec la LES est un défi. Ici, des simulations sont faites pour des régimes stables et instables. Dans le cas instable, les oscillations du cycle limite sont caractérisées et comparées aux résultats expérimentaux. Un bon accord est trouvé entre simulations et expériences.
Mots-clés : Combustion, Thermo-acoustique, Cycles limite, Simulation aux Grandes Échelles
Ignacio Hernández 1 ; Gabriel Staffelbach 1 ; Thierry Poinsot 2 ; Juan C. Román Casado 3 ; Jim B.W. Kok 3
@article{CRMECA_2013__341_1-2_121_0, author = {Ignacio Hern\'andez and Gabriel Staffelbach and Thierry Poinsot and Juan C. Rom\'an Casado and Jim B.W. Kok}, title = {LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor}, journal = {Comptes Rendus. M\'ecanique}, pages = {121--130}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.11.003}, language = {en}, }
TY - JOUR AU - Ignacio Hernández AU - Gabriel Staffelbach AU - Thierry Poinsot AU - Juan C. Román Casado AU - Jim B.W. Kok TI - LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor JO - Comptes Rendus. Mécanique PY - 2013 SP - 121 EP - 130 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.11.003 LA - en ID - CRMECA_2013__341_1-2_121_0 ER -
%0 Journal Article %A Ignacio Hernández %A Gabriel Staffelbach %A Thierry Poinsot %A Juan C. Román Casado %A Jim B.W. Kok %T LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor %J Comptes Rendus. Mécanique %D 2013 %P 121-130 %V 341 %N 1-2 %I Elsevier %R 10.1016/j.crme.2012.11.003 %G en %F CRMECA_2013__341_1-2_121_0
Ignacio Hernández; Gabriel Staffelbach; Thierry Poinsot; Juan C. Román Casado; Jim B.W. Kok. LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor. Comptes Rendus. Mécanique, Combustion, spray and flow dynamics for aerospace propulsion, Volume 341 (2013) no. 1-2, pp. 121-130. doi : 10.1016/j.crme.2012.11.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.003/
[1] Ann P. Dowling, The challenges of lean premixed combustion, in: Proc. International Gas Turbine Congress, 2003.
[2] T. Lieuwen, V. Yang, Combustion instabilities in gas turbine engines. operational experience, fundamental mechanisms and modeling, in: Prog. in Astronautics and Aeronautics AIAA, vol. 210, 2005.
[3] The explanation of certain acoustic phenomena, Nature ( July 18, 1878 ), pp. 319-321
[4] Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame, Combust. Flame, Volume 150 (2007) no. 1–2, pp. 2-26
[5] Edge-flames, Prog. Energy Combust. Sci., Volume 28 (2002) no. 5, pp. 435-475
[6] Theoretical and numerical investigation of a symmetrical triple flame using a parabolic flame type approximation, J. Fluid Mech., Volume 415 (2000), pp. 227-260
[7] DNS study of stabilisation of turbulent triple flames by hot gases, Proc. Combust. Inst., Volume 31 (2007) no. 1, pp. 1649-1656
[8] Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and large eddy simulations, Combust. Flame, Volume 141 (2005), pp. 40-54
[9] Large-eddy simulation of a model gas turbine combustor, Combust. Flame, Volume 137 (2004), pp. 278-294
[10] Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner, J. Fluid Mech., Volume 570 (2007), pp. 17-46
[11] V. Moureau, P. Domingo, L. Vervisch, From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modeling, Combust. Flame (2011), in press. | DOI
[12] CERFACS, AVBP Handbook, http://cerfacs.fr/~avbp/AVBP_V5.X/HANDBOOK, CERFACS, 2009.
[13] Systems of conservation laws, Comm. Pure Appl. Math., Volume 13 (1960), pp. 217-237
[14] General circulation experiments with the primitive equations: 1. The basic experiment, Mon. Weather Rev., Volume 91 (1963), pp. 99-164
[15] A power-law wrinkling model for LES of premixed turbulent combustion: Part I – Non-dynamic formulation and initial tests, Combust. Flame, Volume 131 (2002), pp. 159-180
[16] B. Franzelli, E. Riber, L. Gicquel, T. Poinsot, Large-eddy simulation of combustion instabilities in a lean partially premixed swirled flame, Combust. Flame (2011), in press. | DOI
[17] Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992) no. 1, pp. 104-129
[18] Numerical assessment of thermo-acoustic instabilities in gas turbines, Internat. J. Numer. Methods Fluids, Volume 47 (2005) no. 8–9, pp. 849-855
[19] About the zero Mach number assumption in the calculation of thermoacoustic instabilities, Int. J. Spray Comb. Dynamics, Volume 1 (2009), pp. 67-112
[20] Bifurcation of flame structure in a lean premixed swirl-stabilized combustor: Transition from stable to unstable flame, Combust. Flame, Volume 136 (2004), pp. 383-389
[21] J.C. Román Casado, J.B.W. Kok, Non-linear effects in a lean partially premixed combustor during limit cycle operation, in: Proceedings of ASME Turbo Expo 2012 GT2012, June 11–15, 2012, Copenhagen, Denmark.
[22] Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames, Combust. Flame, Volume 155 (2008) no. 3, pp. 416-429
[23] Thermoacoustic instabilities: should the Rayleigh criterion be extended to include entropy changes?, Combust. Flame, Volume 142 (2005), pp. 153-159
- Progress in CFD simulation for ammonia-fueled internal combustion engines and gas turbines, Journal of the Energy Institute, Volume 119 (2025), p. 101951 | DOI:10.1016/j.joei.2024.101951
- Direct Simulation of Thermoacoustic Instability in Gas Generators Using the CABARET Scheme, Mathematical Models and Computer Simulations, Volume 13 (2021) no. 5, p. 820 | DOI:10.1134/s2070048221050021
- Прямое моделирование термоакустической неустойчивости в газогенераторах по схеме «КАБАРЕ», Математическое моделирование, Volume 33 (2021) no. 2, p. 3 | DOI:10.20948/mm-2021-02-01
- Investigation of self-induced thermoacoustic instabilities in gas turbine combustors, Energy, Volume 190 (2020), p. 116362 | DOI:10.1016/j.energy.2019.116362
- Numerical Simulations of Combustion Instabilities in a Combustor with an Augmentor-Like Geometry, Aerospace, Volume 6 (2019) no. 7, p. 82 | DOI:10.3390/aerospace6070082
- Numerical analysis of the effect of the hydrogen composition on a partially premixed gas turbine combustor, International Journal of Hydrogen Energy, Volume 44 (2019) no. 12, p. 6278 | DOI:10.1016/j.ijhydene.2019.01.066
- Numerical Analysis of Equivalence Ratio Fluctuations in a Partially Premixed Gas Turbine Combustor Using Large Eddy Simulations, Journal of Engineering for Gas Turbines and Power, Volume 141 (2019) no. 4 | DOI:10.1115/1.4041656
- Coupling heat transfer and large eddy simulation for combustion instability prediction in a swirl burner, Combustion and Flame, Volume 191 (2018), p. 239 | DOI:10.1016/j.combustflame.2018.01.007
- , 53rd AIAA/SAE/ASEE Joint Propulsion Conference (2017) | DOI:10.2514/6.2017-4686
- , 55th AIAA Aerospace Sciences Meeting (2017) | DOI:10.2514/6.2017-0606
- Scale Adaptive Simulation of a thermoacoustic instability in a partially premixed lean swirl combustor, Combustion and Flame, Volume 183 (2017), p. 343 | DOI:10.1016/j.combustflame.2017.02.024
- Influence of Heat Transfer and Material Temperature on Combustion Instabilities in a Swirl Burner, Journal of Engineering for Gas Turbines and Power, Volume 139 (2017) no. 5 | DOI:10.1115/1.4035143
- Experimental investigation of combustion instabilities in lean swirl-stabilized partially-premixed flames in single- and multiple-burner setup, International Journal of Spray and Combustion Dynamics, Volume 8 (2016) no. 1, p. 4 | DOI:10.1177/1756827715627064
- Combustion Instability Mode Transition in a Pilot Bluff-Body Stabilized Combustor, Journal of Propulsion and Power, Volume 32 (2016) no. 1, p. 83 | DOI:10.2514/1.b35774
- , 53rd AIAA Aerospace Sciences Meeting (2015) | DOI:10.2514/6.2015-1567
- Transient heat transfer between a turbulent lean partially premixed flame in limit cycle oscillation and the walls of a can type combustor, Applied Thermal Engineering, Volume 81 (2015), p. 128 | DOI:10.1016/j.applthermaleng.2015.01.060
- Finite Volume Time-Domain Solver to Estimate Combustion Instabilities, Journal of Propulsion and Power, Volume 31 (2015) no. 2, p. 632 | DOI:10.2514/1.b35488
Cité par 17 documents. Sources : Crossref
Commentaires - Politique