[Formulation générale de lʼéquation dʼétat de Mie–Grüneisen]
The Mie–Grüneisen equation of state is defined in an incomplete form
Lʼéquation dʼétat de Mie–Grüneisen est définie par la formulation incomplète
Accepté le :
Publié le :
Mots-clés : Génie des matériaux, Equation dʼétat, Équilibre thermodynamique, Mie–Grüneisen, Onde de choc, Changement de phase
Olivier Heuzé 1
@article{CRMECA_2012__340_10_679_0, author = {Olivier Heuz\'e}, title = {General form of the {Mie{\textendash}Gr\"uneisen} equation of state}, journal = {Comptes Rendus. M\'ecanique}, pages = {679--687}, publisher = {Elsevier}, volume = {340}, number = {10}, year = {2012}, doi = {10.1016/j.crme.2012.10.044}, language = {en}, }
Olivier Heuzé. General form of the Mie–Grüneisen equation of state. Comptes Rendus. Mécanique, Volume 340 (2012) no. 10, pp. 679-687. doi : 10.1016/j.crme.2012.10.044. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.044/
[1] Zur kinetischen Theorie der einatomigen Körper, Annalen der Physik, Volume 316 (1903) no. 8, pp. 657-697
[2] Theorie des festen Zustandes einatomiger Elemente, Annalen der Physik, Volume 344 (1912) no. 12, pp. 257-306
[3] O. Heuzé, An equation of state of detonation products for hydrocode calculations, in: 27th International Pyrotechics Seminar, Gd Junction, 2000, pp. 15–19.
[4] O. Heuzé, A complete equation of state for detonation products in hydrocodes, in: 12th APS–SCCM Conference, American Institute of Physics, Atlanta, 2002, CP620, pp. 450–453.
[5] O. Heuzé, Building of equations of state with numerous phase transitions – Application to bismuth, in: 14th APS–SCCM Conference, American Institute of Physics, Baltimore, 2005, CP845, pp. 212–215.
[6] D. Hébert et al., Modelling of multiple phase transition under shock in ice, in: 16th APS–SCCM Conference, American Institute of Physics, Nashville, 2009, CP1195, pp. 1205–1208.
[7] O. Heuzé, D. Swift, Analysis and modelling of laser ramps and shocks in Ti and Zr with phase transition, in: 17th APS–SCCM Conference, American Institute of Physics, Chicago, 2011, CP1426, pp. 1541–1545.
[8] Zur Theorie der spezifischen Wärmen, Annalen der Physik, Volume 39 (1912), pp. 789-839
[9] K. Nagayama, Grüneisen equation of state for condensed media and shock thermodynamics, in: 15th APS–SCCM Conference, American Institute of Physics, Kohala Coast, 2007, CP955, pp. 83–88.
[10] Introduction to Chemical Physics, McGraw–Hill, New York, 1939
[11] The thermal expansion of solids, Phys. Rev., Volume 89 (1953), pp. 832-834
[12] Concerning the Grüneisen constant, Sov. Phys. Solid State, Volume 5 (1963), pp. 653-655
[13] Finite deformations of an elastic solid, Am. J. Math., Volume 59 (1937), pp. 235-260
[14] Finite elastic strain of cubic crystals, Phys. Rev., Volume 71 (1947), pp. 809-824
[15] Temperature effects on the universal equation of state of solids, Phys. Res. B, Volume 35 (1987) no. 4, pp. 1945-1953
[16] Universal features of the equation of state of solids, J. Phys. Condens. Matter, Volume 1 (1989), pp. 1941-1963
[17] Reviews of some experimental and analytical equations of state, Rev. Mod. Phys., Volume 41 (1969), pp. 316-349
[18] Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover, 2002
[19] Introduction to Solid State Physics, John Wiley & Sons, 1996
Cité par Sources :
Commentaires - Politique