The Mie–Grüneisen equation of state is defined in an incomplete form which does not allow access to temperature and entropy. We show here how we can extend it to a complete equation of state in the form by providing an additional independent function which defines the heat capacity variations and then gives access to all the thermodynamic properties.
Lʼéquation dʼétat de Mie–Grüneisen est définie par la formulation incomplète qui ne permet pas dʼaccéder à la température et à lʼentropie. Nous présentons ici son extension dans le cas général , en fournissant une fonction indépendante qui définit les variations de la chaleur spécifique, et permet ainsi lʼaccès à toutes les grandeurs thermodynamiques.
Accepted:
Published online:
Mots-clés : Génie des matériaux, Equation dʼétat, Équilibre thermodynamique, Mie–Grüneisen, Onde de choc, Changement de phase
Olivier Heuzé 1
@article{CRMECA_2012__340_10_679_0, author = {Olivier Heuz\'e}, title = {General form of the {Mie{\textendash}Gr\"uneisen} equation of state}, journal = {Comptes Rendus. M\'ecanique}, pages = {679--687}, publisher = {Elsevier}, volume = {340}, number = {10}, year = {2012}, doi = {10.1016/j.crme.2012.10.044}, language = {en}, }
Olivier Heuzé. General form of the Mie–Grüneisen equation of state. Comptes Rendus. Mécanique, Volume 340 (2012) no. 10, pp. 679-687. doi : 10.1016/j.crme.2012.10.044. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.044/
[1] Zur kinetischen Theorie der einatomigen Körper, Annalen der Physik, Volume 316 (1903) no. 8, pp. 657-697
[2] Theorie des festen Zustandes einatomiger Elemente, Annalen der Physik, Volume 344 (1912) no. 12, pp. 257-306
[3] O. Heuzé, An equation of state of detonation products for hydrocode calculations, in: 27th International Pyrotechics Seminar, Gd Junction, 2000, pp. 15–19.
[4] O. Heuzé, A complete equation of state for detonation products in hydrocodes, in: 12th APS–SCCM Conference, American Institute of Physics, Atlanta, 2002, CP620, pp. 450–453.
[5] O. Heuzé, Building of equations of state with numerous phase transitions – Application to bismuth, in: 14th APS–SCCM Conference, American Institute of Physics, Baltimore, 2005, CP845, pp. 212–215.
[6] D. Hébert et al., Modelling of multiple phase transition under shock in ice, in: 16th APS–SCCM Conference, American Institute of Physics, Nashville, 2009, CP1195, pp. 1205–1208.
[7] O. Heuzé, D. Swift, Analysis and modelling of laser ramps and shocks in Ti and Zr with phase transition, in: 17th APS–SCCM Conference, American Institute of Physics, Chicago, 2011, CP1426, pp. 1541–1545.
[8] Zur Theorie der spezifischen Wärmen, Annalen der Physik, Volume 39 (1912), pp. 789-839
[9] K. Nagayama, Grüneisen equation of state for condensed media and shock thermodynamics, in: 15th APS–SCCM Conference, American Institute of Physics, Kohala Coast, 2007, CP955, pp. 83–88.
[10] Introduction to Chemical Physics, McGraw–Hill, New York, 1939
[11] The thermal expansion of solids, Phys. Rev., Volume 89 (1953), pp. 832-834
[12] Concerning the Grüneisen constant, Sov. Phys. Solid State, Volume 5 (1963), pp. 653-655
[13] Finite deformations of an elastic solid, Am. J. Math., Volume 59 (1937), pp. 235-260
[14] Finite elastic strain of cubic crystals, Phys. Rev., Volume 71 (1947), pp. 809-824
[15] Temperature effects on the universal equation of state of solids, Phys. Res. B, Volume 35 (1987) no. 4, pp. 1945-1953
[16] Universal features of the equation of state of solids, J. Phys. Condens. Matter, Volume 1 (1989), pp. 1941-1963
[17] Reviews of some experimental and analytical equations of state, Rev. Mod. Phys., Volume 41 (1969), pp. 316-349
[18] Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover, 2002
[19] Introduction to Solid State Physics, John Wiley & Sons, 1996
Cited by Sources:
Comments - Policy