Comptes Rendus
General form of the Mie–Grüneisen equation of state
Comptes Rendus. Mécanique, Volume 340 (2012) no. 10, pp. 679-687.

The Mie–Grüneisen equation of state is defined in an incomplete form P(V,E) which does not allow access to temperature and entropy. We show here how we can extend it to a complete equation of state in the S(V,E) form by providing an additional independent function which defines the heat capacity variations and then gives access to all the thermodynamic properties.

Lʼéquation dʼétat de Mie–Grüneisen est définie par la formulation incomplète P(V,E) qui ne permet pas dʼaccéder à la température et à lʼentropie. Nous présentons ici son extension dans le cas général S(V,E), en fournissant une fonction indépendante qui définit les variations de la chaleur spécifique, et permet ainsi lʼaccès à toutes les grandeurs thermodynamiques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2012.10.044
Keywords: Material engineering, Equation of state, Thermodynamic equilibrium, Mie–Grüneisen, Shock wave, Phase transition
Mots-clés : Génie des matériaux, Equation dʼétat, Équilibre thermodynamique, Mie–Grüneisen, Onde de choc, Changement de phase

Olivier Heuzé 1

1 CEA, DAM, DIF, 91297 Arpajon, France
@article{CRMECA_2012__340_10_679_0,
     author = {Olivier Heuz\'e},
     title = {General form of the {Mie{\textendash}Gr\"uneisen} equation of state},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {679--687},
     publisher = {Elsevier},
     volume = {340},
     number = {10},
     year = {2012},
     doi = {10.1016/j.crme.2012.10.044},
     language = {en},
}
TY  - JOUR
AU  - Olivier Heuzé
TI  - General form of the Mie–Grüneisen equation of state
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 679
EP  - 687
VL  - 340
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.044
LA  - en
ID  - CRMECA_2012__340_10_679_0
ER  - 
%0 Journal Article
%A Olivier Heuzé
%T General form of the Mie–Grüneisen equation of state
%J Comptes Rendus. Mécanique
%D 2012
%P 679-687
%V 340
%N 10
%I Elsevier
%R 10.1016/j.crme.2012.10.044
%G en
%F CRMECA_2012__340_10_679_0
Olivier Heuzé. General form of the Mie–Grüneisen equation of state. Comptes Rendus. Mécanique, Volume 340 (2012) no. 10, pp. 679-687. doi : 10.1016/j.crme.2012.10.044. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.044/

[1] G. Mie Zur kinetischen Theorie der einatomigen Körper, Annalen der Physik, Volume 316 (1903) no. 8, pp. 657-697

[2] E. Grüneisen Theorie des festen Zustandes einatomiger Elemente, Annalen der Physik, Volume 344 (1912) no. 12, pp. 257-306

[3] O. Heuzé, An equation of state of detonation products for hydrocode calculations, in: 27th International Pyrotechics Seminar, Gd Junction, 2000, pp. 15–19.

[4] O. Heuzé, A complete equation of state for detonation products in hydrocodes, in: 12th APS–SCCM Conference, American Institute of Physics, Atlanta, 2002, CP620, pp. 450–453.

[5] O. Heuzé, Building of equations of state with numerous phase transitions – Application to bismuth, in: 14th APS–SCCM Conference, American Institute of Physics, Baltimore, 2005, CP845, pp. 212–215.

[6] D. Hébert et al., Modelling of multiple phase transition under shock in ice, in: 16th APS–SCCM Conference, American Institute of Physics, Nashville, 2009, CP1195, pp. 1205–1208.

[7] O. Heuzé, D. Swift, Analysis and modelling of laser ramps and shocks in Ti and Zr with phase transition, in: 17th APS–SCCM Conference, American Institute of Physics, Chicago, 2011, CP1426, pp. 1541–1545.

[8] P. Debye Zur Theorie der spezifischen Wärmen, Annalen der Physik, Volume 39 (1912), pp. 789-839

[9] K. Nagayama, Grüneisen equation of state for condensed media and shock thermodynamics, in: 15th APS–SCCM Conference, American Institute of Physics, Kohala Coast, 2007, CP955, pp. 83–88.

[10] J.C. Slater Introduction to Chemical Physics, McGraw–Hill, New York, 1939

[11] J.S. Dugdale; D.K.C. MacDonald The thermal expansion of solids, Phys. Rev., Volume 89 (1953), pp. 832-834

[12] V.Y. Vashchenko; V.N. Zubarev Concerning the Grüneisen constant, Sov. Phys. Solid State, Volume 5 (1963), pp. 653-655

[13] F.D. Murnaghan Finite deformations of an elastic solid, Am. J. Math., Volume 59 (1937), pp. 235-260

[14] F. Birch Finite elastic strain of cubic crystals, Phys. Rev., Volume 71 (1947), pp. 809-824

[15] P. Vinet; J.R. Smith; J. Ferrante; J.H. Rose Temperature effects on the universal equation of state of solids, Phys. Res. B, Volume 35 (1987) no. 4, pp. 1945-1953

[16] P. Vinet; J. Ferrante; J.H. Rose; J.R. Smith Universal features of the equation of state of solids, J. Phys. Condens. Matter, Volume 1 (1989), pp. 1941-1963

[17] J.R. MacDonald Reviews of some experimental and analytical equations of state, Rev. Mod. Phys., Volume 41 (1969), pp. 316-349

[18] Ya.B. Zelʼdovich; Yu.P. Raizer Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover, 2002

[19] C. Kittel Introduction to Solid State Physics, John Wiley & Sons, 1996

Cited by Sources:

Comments - Policy