[Simulations de lʼallumage des foyers de chambre de combustion aéronautique]
Lʼobjectif de cette étude est le développement dʼune méthodologie permettant de prévoir lʼallumage dʼune chambre de combustion aéronautique. Un modèle dʼallumage a été développé afin dʼétudier lʼexpansion dʼun noyau dʼallumage sphérique au sein dʼun brouillard. Il peut être couplé à un code de calcul CFD, et utilisé selon deux approches. La première consiste à établir une cartographie de probabilité dʼallumage à partir dʼun champ CFD non-réactif. La deuxième consiste à utiliser la solution du modèle comme condition initiale afin de réaliser un calcul de propagation de la flamme au foyer. Afin de valider ces deux approches, des simulations RANS et LES ont été réalisées sur une configuration de chambre de combustion équipée dʼun système dʼinjection industriel.
The present study aims at contributing to the development of a methodology to predict and improve the ignition performances of aircraft combustors. A model has been developed to investigate the early growth of a spherical ignition kernel in a two-phase flow mixture. It has been combined with a multiphysic code through two different approaches. The ignition kernel model is used to build the ignition probability map of a combustor. The output of the model can also be introduced as an initial condition in an unsteady simulation to test the flame propagation in the combustor. To validate both methods, RANS and LES simulations have been performed on an experimental combustion chamber, reproducing one sector of an industrial combustor.
Mot clés : Écoulements diphasiques, Simulation aux Grands Échelles, Équation de Navier–Stokes moyennée, Combustion
Guillaume Linassier 1, 2 ; Anne Bruyat 1 ; Philippe Villedieu 1 ; Nicolas Bertier 3 ; C. Laurent 1 ; Olivier Rouzaud 1 ; Renaud Lecourt 4 ; Hubert Verdier 2 ; Gérard Lavergne 1
@article{CRMECA_2013__341_1-2_201_0, author = {Guillaume Linassier and Anne Bruyat and Philippe Villedieu and Nicolas Bertier and C. Laurent and Olivier Rouzaud and Renaud Lecourt and Hubert Verdier and G\'erard Lavergne}, title = {Application of numerical simulations to predict aircraft combustor ignition}, journal = {Comptes Rendus. M\'ecanique}, pages = {201--210}, publisher = {Elsevier}, volume = {341}, number = {1-2}, year = {2013}, doi = {10.1016/j.crme.2012.11.009}, language = {en}, }
TY - JOUR AU - Guillaume Linassier AU - Anne Bruyat AU - Philippe Villedieu AU - Nicolas Bertier AU - C. Laurent AU - Olivier Rouzaud AU - Renaud Lecourt AU - Hubert Verdier AU - Gérard Lavergne TI - Application of numerical simulations to predict aircraft combustor ignition JO - Comptes Rendus. Mécanique PY - 2013 SP - 201 EP - 210 VL - 341 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2012.11.009 LA - en ID - CRMECA_2013__341_1-2_201_0 ER -
%0 Journal Article %A Guillaume Linassier %A Anne Bruyat %A Philippe Villedieu %A Nicolas Bertier %A C. Laurent %A Olivier Rouzaud %A Renaud Lecourt %A Hubert Verdier %A Gérard Lavergne %T Application of numerical simulations to predict aircraft combustor ignition %J Comptes Rendus. Mécanique %D 2013 %P 201-210 %V 341 %N 1-2 %I Elsevier %R 10.1016/j.crme.2012.11.009 %G en %F CRMECA_2013__341_1-2_201_0
Guillaume Linassier; Anne Bruyat; Philippe Villedieu; Nicolas Bertier; C. Laurent; Olivier Rouzaud; Renaud Lecourt; Hubert Verdier; Gérard Lavergne. Application of numerical simulations to predict aircraft combustor ignition. Comptes Rendus. Mécanique, Volume 341 (2013) no. 1-2, pp. 201-210. doi : 10.1016/j.crme.2012.11.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.11.009/
[1] Numerical simulation of spark ignition including ionization, Proceedings of the Combustion Institute, Volume 28 (2000), pp. 1177-1185
[2] Large eddy simulation of forced ignition of an annular bluff-body burner, Combustion and Flame, Volume 157 (2010), pp. 579-601
[3] J. Weckering, A. Sadiki, J. Janickay, E. Mastorakos, Investigations of ignition probability of a forced ignited turbulent methane jet using LES, in: V European Conference on Computational Fluid Dynamics, Lisbon, June 2010.
[4] A. Neophytou, Spark ignition and flame propagation in sprays, PhD thesis, University of Cambridge, 2010.
[5] N. Garcia Rosa, P. Villedieu, J. Dewitte, G. Lavergne, A new droplet wall interaction model, in: Proceedings of the ICLASS, Kyoto, August 2006.
[6] R. Lecourt, G. Linassier, G. Lavergne, Detailed characterisation of a swirled air/kerosene spray in reactive and non-reactive conditions downstream from an actual turbojet injection system, in: Proceedings of ASME Turbo Expo 2010, Vancouver, Canada, June 2011.
[7] A. Lang, R. Lecourt, F. Guliani, Statistical evaluation of ignition phenomena in turbojet engines, in: Proceedings of ASME Turbo Expo 2010, Glasgow, June 2010.
[8] S. Pascaud, Vers la simulation aux grandes échelles des écoulements turbulents diphasiques réactifs : application aux foyers aéronautiques, PhD thesis, Université de Toulouse, 2006.
[9] A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems, Progress in Energy and Combustion Science, Volume 32 (2006), pp. 93-161
[10] N. García Rosa, G. Linassier, R. Lecourt, P. Villedieu, G. Lavergne, Experimental and numerical study of high-altitude ignition of a turbojet combustor, in: Heat Transfer Engineering, Xiʼan, 2009.
[11] A two-step chemical scheme for large eddy simulation of kerosene–air flames, Combustion and Flame, Volume 157 (2010), pp. 1364-1373
[12] G. Damkoler, NACA Technical Memorandum No. 1112, 1947.
[13] Modélisation et théorie des flammes, Éditions TECHNIP, 2000
Cité par Sources :
Commentaires - Politique