Comptes Rendus
A simplified coupled crankshaft–engine block model
Comptes Rendus. Mécanique, Volume 341 (2013) no. 11-12, pp. 743-754.

Modern highly loaded crankshafts and bearing improvement requires an accurate knowledge of the acting forces. This information is now provided by quick and robust design tools based on simplified coupled engine block–crankshaft models. In this paper, a model based on beam theory is proposed. Several considerations are addressed. Among these considerations are bearing misalignments, crankshaft bending stiffness, clearance, hydrodynamic sustention and bearing deformation stiffness. The model substitutes efficiently engine simulation in crankshaft and bearing preliminary design.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2013.09.008
Keywords: Bearing loads, Crankshaft, Stiffness, Beam model, Deformation, Misalignment

Bilel Bellakhdhar 1 ; Abdelwaheb Dogui 1 ; Jean-Louis Ligier 2

1 Laboratory of Mechanical Engineering, National Engineering School of Monastir, University of Monastir, Avenue Ibn Eljazzar, 5019 Monastir, Tunisia
2 Haute École dʼingénierie et de gestion du canton de Vaud (HEIG-VD), 1, route de Cheseaux, CH-1400 Yverdon-les-Bains, Switzerland
@article{CRMECA_2013__341_11-12_743_0,
     author = {Bilel Bellakhdhar and Abdelwaheb Dogui and Jean-Louis Ligier},
     title = {A simplified coupled crankshaft{\textendash}engine block model},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {743--754},
     publisher = {Elsevier},
     volume = {341},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crme.2013.09.008},
     language = {en},
}
TY  - JOUR
AU  - Bilel Bellakhdhar
AU  - Abdelwaheb Dogui
AU  - Jean-Louis Ligier
TI  - A simplified coupled crankshaft–engine block model
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 743
EP  - 754
VL  - 341
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2013.09.008
LA  - en
ID  - CRMECA_2013__341_11-12_743_0
ER  - 
%0 Journal Article
%A Bilel Bellakhdhar
%A Abdelwaheb Dogui
%A Jean-Louis Ligier
%T A simplified coupled crankshaft–engine block model
%J Comptes Rendus. Mécanique
%D 2013
%P 743-754
%V 341
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2013.09.008
%G en
%F CRMECA_2013__341_11-12_743_0
Bilel Bellakhdhar; Abdelwaheb Dogui; Jean-Louis Ligier. A simplified coupled crankshaft–engine block model. Comptes Rendus. Mécanique, Volume 341 (2013) no. 11-12, pp. 743-754. doi : 10.1016/j.crme.2013.09.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.09.008/

[1] K. Radermacher Das instationar belastete zylindrishes Gleitlager, 1962 (Dissertation TH, Karlsruhe, Germany)

[2] V. Gross; A.W. Hussmann Forces in the main bearings of multicylinder engines, SAE, 1966 (# 660756)

[3] R.S. Paranjpe; S.I. Tseregounis; M.B. Viola Comparison between theoretical calculations and oil film thickness measurements using the total capacitance method for crankshaft bearings in a firing engine, Tribol. Trans., Volume 43 (2000), pp. 345-356

[4] J.M. Conway-Jones; F.A. Martin; R. Gojon Refinement of engine bearing design techniques, Tribol. Int., Volume 24 (1991), pp. 119-127

[5] I. Piraner; C. Pflueger; O. Bouthier Cummings crankshaft and bearing analysis process, North American MDI User Conference, 2002

[6] F.V. Tinaut; A. Melgar; B. Gimenez; L. Fernandez; H. Huidobro A method to determine the two components of the crankshaft load on a bearing cap in firing engines, 2000 (SAE Technical Paper Series, # 2000-01-1340)

[7] J. Sun; J. Wang; C. Gui Whole crankshaft beam-element finite-element method for calculation crankshaft deformation and bearing load of an engine, Proc. Inst. Mech. Eng., Part J, J. Eng. Tribol. (2010), pp. 224-299

[8] J.F. Booker Dynamically loaded Journal bearings: numerical application of the mobility method, J. Lubr. Techol. – Trans. ASME, Ser. F, Volume 93 (1971) no. 1, pp. 168-176

[9] M. Rebbert; R. Lach; P. Kley Dynamic crankshaft stress calculation using a combination of MSS and FEA, International ADAMS User Meeting, 2000

[10] J.H. Raub; J. Jones; P. Kley; M. Rebbert Analytical investigation of crankshaft dynamics as a virtual engine module, Proceedings SAE Noise and Vibrations Conference and Exposition, May 1999

[11] J. Sun; C.-L. Gui; J. Wang Research on elastohydrodynamic lubrication of a crankshaft bearing with a rough surface considering crankshaft deformation, Proc. Inst. Mech. Eng., Part D, J. Automob. Eng.Mech, Volume 222 (2008) no. 12, pp. 2403-2414

[12] B. Bellakhdhar; A. Dogui; J.-L. Ligier Rigidité en flexion dʼun vilebrequin, Méc. Ind., Volume 12 (2011), pp. 37-43

[13] B. Bellakhdhar; C. Bouraoui; A. Dogui Analyse statique dʼun arbre sur cinq appuis élastiques, désalignés et avec jeux, Tunisie (2008), pp. 103-104

[14] Z.P. Mourelatos A crankshaft system model for structural dynamic analysis of internal combustion engines, Comput. Struct., Volume 79 (2001), pp. 2009-2027

[15] Q. Leclere Étude et développement de la mesure indirecte dʼeffort: Application à lʼidentification des sources internes dʼun moteur diesel, 2003 (thèse, Institut national des sciences appliquées de Lyon)

[16] B. Bellakhdhar; A. Dogui; J.-L. Ligier Main bearing stiffness investigation, Int. J. Mech. Mat. Eng., Volume 2 (2011) no. 1, pp. 8-12

[17] J. Frêne Butées et paliers hydrodynamiques, 1995 (Techniques de lʼingénieur n° B5 320, pp. 1–36; B5 321, pp. 1–7; B5 347, p. 1)

  • Xin Zhao; Jianhua Shi; Ligang Wu; Fukang Ma; Zhandong Zhang A multilevel multiobjective coordination matching design technique for the main bearing assembly structure of a diesel engine, Energy Science Engineering, Volume 11 (2023) no. 12, p. 4520 | DOI:10.1002/ese3.1595
  • Xin Zhao; Tiexiong Su; Xiaoyong Liu; Xueqing Zhang Multi‐objective optimization of main bearing assembly structure based on improved NSGA‐II, Energy Science Engineering, Volume 10 (2022) no. 1, p. 43 | DOI:10.1002/ese3.1003
  • Xin Zhao; Tiexiong Su; Xiaoyong Liu; Yunpeng Feng Research on coordination design method of main bearing assembly structure based on the maximum radial deformation of bearing bush, International Journal of Engine Research, Volume 23 (2022) no. 11, p. 1795 | DOI:10.1177/14680874211040924
  • Joon Jang; Woo Chun Choi Error Compensation Through Analysis of Force and Deformation in Non-circular Grinding, International Journal of Precision Engineering and Manufacturing, Volume 23 (2022) no. 6, p. 627 | DOI:10.1007/s12541-022-00649-8
  • Atef Hmida; Ahmed Hammami; Fakher Chaari; Mounir Ben Amar; Mohamed Haddar Effects of misfire on the dynamic behavior of gasoline Engine Crankshafts, Engineering Failure Analysis, Volume 121 (2021), p. 105149 | DOI:10.1016/j.engfailanal.2020.105149
  • Zhilong Gao; Hanjiang Song; Yongdan Chen; Jinjie Zhang; Zhinong Jiang Fault feature and diagnostic method of bending micro- deformation of crankshaft of piston engine, Nondestructive Testing and Evaluation, Volume 35 (2020) no. 4, p. 427 | DOI:10.1080/10589759.2019.1668942
  • Yu. V. Rozhdestvenskii; N. A. Khozeniuk; A. A. Mylnikov The Technique of an Interconnection Problem of the Hydrodynamic Lubrication Theory and the Nonlinear Dynamics for Mechanical Systems “An Elastic Crankshaft on Film Lubrication Bearings”, Bulletin of the South Ural State University series "Mechanical Engineering Industry", Volume 15 (2015) no. 4, p. 41 | DOI:10.14529/engin150405
  • Qinglei Zhang; Jianguo Duan; Suohuai Zhang; Yumin Fu Nonlinear dynamic modeling for a diesel engine propeller shafting used in large marines, Chinese Journal of Mechanical Engineering, Volume 27 (2014) no. 5, p. 937 | DOI:10.3901/cjme.2014.0721.121

Cité par 8 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: