[Mouvement inertiel dʼun corps rigide avec une cavité remplie dʼun fluide visqueux]
Dans cette note, nous décrivons, par une analyse mathématique rigoureuse, le mouvement dʼun système
In this note we announce a number of analytical and numerical results related to the motion of a system
Accepté le :
Publié le :
Mots-clés : Cavité remplie dʼun fluide, Équations de Navier–Stokes, Moment cinétique
Giovanni P. Galdi 1 ; Giusy Mazzone 1 ; Paolo Zunino 1
@article{CRMECA_2013__341_11-12_760_0, author = {Giovanni P. Galdi and Giusy Mazzone and Paolo Zunino}, title = {Inertial motions of a rigid body with a cavity filled with a viscous liquid}, journal = {Comptes Rendus. M\'ecanique}, pages = {760--765}, publisher = {Elsevier}, volume = {341}, number = {11-12}, year = {2013}, doi = {10.1016/j.crme.2013.10.001}, language = {en}, }
TY - JOUR AU - Giovanni P. Galdi AU - Giusy Mazzone AU - Paolo Zunino TI - Inertial motions of a rigid body with a cavity filled with a viscous liquid JO - Comptes Rendus. Mécanique PY - 2013 SP - 760 EP - 765 VL - 341 IS - 11-12 PB - Elsevier DO - 10.1016/j.crme.2013.10.001 LA - en ID - CRMECA_2013__341_11-12_760_0 ER -
Giovanni P. Galdi; Giusy Mazzone; Paolo Zunino. Inertial motions of a rigid body with a cavity filled with a viscous liquid. Comptes Rendus. Mécanique, Volume 341 (2013) no. 11-12, pp. 760-765. doi : 10.1016/j.crme.2013.10.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.001/
[1] A First Course in Rational Continuum Mechanics, vol. 1: General Concepts, Academic Press, 1991
[2] On the motion of a rigid body with cavities filled with a homogeneous liquid drop, Zh. Fiz.-Khim. Obs. Physics Part (Selected Works), Volume 17 (1885), pp. 81-113 (145–199, 231–280. Reprinted in his, vol. 1, 1948, pp. 31-152)
[3] Operator Approach to Linear Problems of Hydrodynamics, vol. 2: Nonself-Adjoint Problems for Viscous Fluids, Birkhäuser Verlag, Basel–Boston–Berlin, 2000
[4] Geometric Numerical Integration, Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006
[5] Finite Element Methods for Navier--Stokes Equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986
- Parametric Analysis of Nonlinear Oscillations of the “Rotor–Weakly Conductive Viscous Fluid–Foundation” System under the Action of a Magnetic Field, Applied Sciences, Volume 13 (2023) no. 21, p. 12089 | DOI:10.3390/app132112089
- On the motion of a pendulum with a cavity filled with a compressible fluid, Journal of Mathematical Physics, Volume 64 (2023) no. 11 | DOI:10.1063/5.0143910
- Studying the influence of a gyrostatic moment on the motion of a charged rigid body containing a viscous incompressible liquid, The European Physical Journal Plus, Volume 138 (2023) no. 10 | DOI:10.1140/epjp/s13360-023-04581-2
- On weak solutions to the problem of a rigid body with a cavity filled with a compressible fluid, and their asymptotic behavior, International Journal of Non-Linear Mechanics, Volume 121 (2020), p. 103431 | DOI:10.1016/j.ijnonlinmec.2020.103431
- On the Motion of a Body with a Cavity Filled with Compressible Fluid, Archive for Rational Mechanics and Analysis, Volume 232 (2019) no. 3, p. 1649 | DOI:10.1007/s00205-018-01351-8
- A Maximal Regularity Approach to the Study of Motion of a Rigid Body with a Fluid-Filled Cavity, Journal of Mathematical Fluid Mechanics, Volume 21 (2019) no. 3 | DOI:10.1007/s00021-019-0449-y
- On the Motion of a Fluid-Filled Rigid Body with Navier Boundary Conditions, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, p. 1582 | DOI:10.1137/18m1212264
- Stability of Permanent Rotations and Long-Time Behavior of Inertial Motions of a Rigid Body with an Interior Liquid-Filled Cavity, Particles in Flows (2017), p. 217 | DOI:10.1007/978-3-319-60282-0_4
- Inertial Motions of a Rigid Body with a Cavity Filled with a Viscous Liquid, Archive for Rational Mechanics and Analysis, Volume 221 (2016) no. 1, p. 487 | DOI:10.1007/s00205-016-0966-2
- On the Motion of a Liquid-Filled Rigid Body Subject to a Time-Periodic Torque, Recent Developments of Mathematical Fluid Mechanics (2016), p. 233 | DOI:10.1007/978-3-0348-0939-9_13
- Stabilization of a fluid–rigid body system, Journal of Differential Equations, Volume 259 (2015) no. 11, p. 6459 | DOI:10.1016/j.jde.2015.07.024
Cité par 11 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier