[Analyse asymptotique de plaques minces quasicristallines linéaires]
Lʼanalyse asymptotique, lorsque lʼépaisseur tend vers 0, de plaques minces quasicristallines linéaires montre que, selon le type de conditions aux limites considéré, il apparaît 26 modèles rendant compte de comportements différents. Ce nombre étonnamment élevé de modèles limites est essentiellement dû au couplage entre les déplacements élastiques et un type spécifique de réarrangement atomique appelé phason. On montre en particulier lʼinfluence de lʼordre icosahédral sur ces différents comportements limites.
We rigorously derive a theory of thin linearly quasicrystalline plates by studying the limit behavior of a three-dimensional flat body as its thickness tends to zero. We exhibit the existence of 26 different models, each of them linked to a specific set of boundary conditions. This stunning number of models is essentially the consequence of the coupling between displacements and a specific local rearrangement of matter at the microscopic scale that is called a phason. We exhibit the influence of the icosahedral order on the limit behavior.
Accepté le :
Publié le :
Mot clés : Analyse asymptotique, Quasicristaux, Structures minces
Thibaut Weller 1 ; Christian Licht 1
@article{CRMECA_2013__341_11-12_793_0, author = {Thibaut Weller and Christian Licht}, title = {Asymptotic modeling of thin linearly quasicrystalline plates}, journal = {Comptes Rendus. M\'ecanique}, pages = {793--798}, publisher = {Elsevier}, volume = {341}, number = {11-12}, year = {2013}, doi = {10.1016/j.crme.2013.10.002}, language = {en}, }
Thibaut Weller; Christian Licht. Asymptotic modeling of thin linearly quasicrystalline plates. Comptes Rendus. Mécanique, Volume 341 (2013) no. 11-12, pp. 793-798. doi : 10.1016/j.crme.2013.10.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.002/
[1] Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984), pp. 1951-1953
[2] The Physics of Quasicrystals (P.J. Steinhardt; S. Ostlund, eds.), World Scientific, Singapore, 1987
[3] Quasicrystals from nanocrystals, Mater. Sci., Volume 461 (2009), pp. 892-893
[4] Useful Quasicrystals, World Scientific, London, 2005
[5] New prospects from potential applications of quasicrystalline materials, Mater. Sci. Eng., Volume 294–296 (2000), pp. 4-9
[6] Asymptotic modeling of thin piezoelectric plates, Ann. Solid Struct. Mech., Volume 1 (2010), pp. 173-188
[7] Mathematical modeling of piezomagnetoelectric thin plates, Eur. J. Mech. A, Solids, Volume 29 (2010), pp. 928-937
[8] Asymptotic modeling of piezoelectric plates with electric field gradient, C. R., Mecanique, Volume 340 (2012), pp. 405-410
[9] Asymptotic modeling of linearly piezoelectric slender rods, C. R., Mecanique, Volume 336 (2008), pp. 572-577
[10] Generalized elasticity theory of quasicrystals, Phys. Rev. B, Volume 48 (1993), pp. 7003-7010
[11] Mathematical Theory of Elasticity of Quasicrystals and Its Applications, Springer, 2011
[12] Elasticity and dislocations in pentagonal and icosahedral quasicrystals, Phys. Rev. Lett., Volume 54 (1985), pp. 1520-1523
[13] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011
[14] Mathematical Elasticity, vol. II, North-Holland, 1997
Cité par Sources :
Commentaires - Politique