The microcracking sequence (radial, median, lateral, and ring-like) arising at the glass surface under sharp contact loading and the extent to which these cracks develop is intimately related to the way the material attempts to relax the corresponding stress field. Two processes which are known to occur upon indentation are densification and isochoric shear flow. The contributions of both mechanisms were quantitatively assessed for glasses belonging to different chemical systems in previous papers [1–3]. In the present study, indentation cracking maps are provided, which offer guidelines to the design of glasses with better surface damage resistance based on their elastic properties and hardness.
Accepté le :
Publié le :
Tanguy Rouxel 1 ; Pathikumar Sellappan 2 ; Fabrice Célarié 1 ; Patrick Houizot 1 ; Jean-Christophe Sanglebœuf 1
@article{CRMECA_2014__342_1_46_0, author = {Tanguy Rouxel and Pathikumar Sellappan and Fabrice C\'elari\'e and Patrick Houizot and Jean-Christophe Sangleb{\oe}uf}, title = {Toward glasses with better indentation cracking resistance}, journal = {Comptes Rendus. M\'ecanique}, pages = {46--51}, publisher = {Elsevier}, volume = {342}, number = {1}, year = {2014}, doi = {10.1016/j.crme.2013.10.008}, language = {en}, }
TY - JOUR AU - Tanguy Rouxel AU - Pathikumar Sellappan AU - Fabrice Célarié AU - Patrick Houizot AU - Jean-Christophe Sanglebœuf TI - Toward glasses with better indentation cracking resistance JO - Comptes Rendus. Mécanique PY - 2014 SP - 46 EP - 51 VL - 342 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2013.10.008 LA - en ID - CRMECA_2014__342_1_46_0 ER -
%0 Journal Article %A Tanguy Rouxel %A Pathikumar Sellappan %A Fabrice Célarié %A Patrick Houizot %A Jean-Christophe Sanglebœuf %T Toward glasses with better indentation cracking resistance %J Comptes Rendus. Mécanique %D 2014 %P 46-51 %V 342 %N 1 %I Elsevier %R 10.1016/j.crme.2013.10.008 %G en %F CRMECA_2014__342_1_46_0
Tanguy Rouxel; Pathikumar Sellappan; Fabrice Célarié; Patrick Houizot; Jean-Christophe Sanglebœuf. Toward glasses with better indentation cracking resistance. Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 46-51. doi : 10.1016/j.crme.2013.10.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.008/
[1] et al. Quantitative evaluation of indentation-induced densification in glass, J. Mater. Res., Volume 20 (2005), pp. 3404-3412
[2] et al. Indentation deformation mechanism in glass: Densification versus shear flow, J. Appl. Phys., Volume 107 (2010), p. 094903
[3] et al. Composition dependence of indentation deformation and indentation cracking in glass, Acta Mater., Volume 61 (2013), pp. 5949-5965
[4] et al. Indentation deformation/fracture of normal and anomalous glasses, J. Non-Cryst. Solids, Volume 31 (1979), pp. 415-428
[5] Quasi-static particle damage in brittle solids – I. Observations, analysis and implications, Acta Metall., Volume 24 (1976), pp. 939-956
[6] A model for crack initiation in elastic/plastic indentation fields, J. Mater. Sci., Volume 12 (1977), pp. 2195-2199
[7] The origin of median and lateral cracks around plastic indents in brittle materials, J. Phys. D: Appl. Phys., Volume 11 (1978), pp. 2091-2102
[8] Direct observation and analysis of indentation cracking in glasses and ceramics, J. Am. Ceram. Soc., Volume 73 (1990), pp. 787-817
[9] et al. Elastic properties and surface damage resistance of nitrogen-rich (Ca, Sr)–Si–O–N glasses, J. Non-Cryst. Solids, Volume 356 (2010), pp. 2120-2126
[10] On the deformation morphology of bulk metallic glasses underneath a Vickers indentation, Intermetallics, Volume 17 (2009), p. 211
[11] et al. Hardness and plastic deformation in a bulk metallic glass, Acta Mater., Volume 53 (2005), pp. 705-717
[12] et al. Effect of high temperature ambience during sharp indentation on the residual contact site properties, J. Phys. D: Appl. Phys., Volume 41 (2008), p. 074025
[13] Applications des potentiels à lʼétude de lʼéquilibre et du mouvement des solides élastiques, Gauthier-Villars, Paris, 1885
[14]
, Dover Pub. Inc. (1927), p. 127[15] Elastic stress fields caused by indenting brittle materials, Philos. Mag. A, Volume 46 (1982), pp. 617-628
[16] The relation between load and penetration in the axi-symmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci., Volume 3 (1965), pp. 47-57
[17] et al. Shrinkage behavior of Knoop indentations in silica and soda-lime-silica glasses, J. Am. Ceram. Soc., Volume 84 (2001), pp. 2141-2143
[18] Hardness and low-temperature deformation of silica glass, J. Mater. Sci., Volume 3 (1968), pp. 603-609
[19] et al. Effect of densification on crack initiation under Vickers indentation test, J. Non-Cryst. Solids, Volume 356 (2010), pp. 1768-1773
[20] Poissonʼs ratio and the densification of glass under high pressure, Phys. Rev. Lett., Volume 100 (2008), p. 225501
[21] et al. Poissonʼs ratio and modern materials, Nat. Mater., Volume 10 (2011), pp. 823-837
[22] Dynamics of shear bands in a dense granular material forced by a slowly moving rigid body, Phys. Rev. E, Volume 84 (2011), p. 041304
[23] et al. Toughness, extrinsic effects and Poissonʼs ratio of bulk metallic glasses, Acta Mater., Volume 60 (2012), pp. 4800-4809
[24] Indentation behavior of soda-lime silica glass, fused silica, and single-crystal quartz at liquid nitrogen temperature, J. Am. Ceram. Soc., Volume 78 (1995), pp. 737-744
[25] A new low-brittleness glass in the soda-lime-silica glass family, J. Am. Ceram. Soc., Volume 81 (1998), pp. 2485-2488
[26] et al. Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials, Acta Mater., Volume 60 (2012), pp. 5448-5467
[27] et al. Nanoindentation of ion-implanted crystalline germanium, Phys. Rev. B, Volume 80 (2009), p. 115210
- Role of densification in deformation behaviors of model metallic glasses under 3-D nanoindentation studied in molecular dynamics simulation, Journal of Non-Crystalline Solids, Volume 638 (2024), p. 123071 | DOI:10.1016/j.jnoncrysol.2024.123071
- Field strength effect on structure, hardness, and crack resistance in single modifier aluminoborosilicate glasses, Journal of the American Ceramic Society, Volume 106 (2023) no. 2, p. 951 | DOI:10.1111/jace.18796
- Field strength effect on elastoplastic behavior of aluminoborosilicate glass: I. Elastic moduli and indentation size effect, Journal of the American Ceramic Society, Volume 106 (2023) no. 8, p. 4664 | DOI:10.1111/jace.19154
- Field strength effect on elastoplastic behavior of aluminoborosilicate glass: II. Volumetric recovery, Journal of the American Ceramic Society, Volume 106 (2023) no. 9, p. 5213 | DOI:10.1111/jace.19152
- Compositional Effects on Indentation Mechanical Properties of Chemically Strengthened TiO2-Doped Soda Lime Silicate Glasses, Materials, Volume 15 (2022) no. 2, p. 577 | DOI:10.3390/ma15020577
- Indentation of glasses, Progress in Materials Science, Volume 121 (2021), p. 100834 | DOI:10.1016/j.pmatsci.2021.100834
- Antifouling effect of water-soluble phosphate glass frit for filtration plants, Folia Microbiologica, Volume 65 (2020) no. 2, p. 363 | DOI:10.1007/s12223-019-00743-x
- Sharp indentation stress fields in fused silica: Finite element analysis and Yoffe analytic model, Journal of the American Ceramic Society, Volume 103 (2020) no. 12, p. 7135 | DOI:10.1111/jace.17399
- Effect of B2O3 substitution for SiO2 in alkali aluminoborosilicate glasses on chemical strengthening, Journal of the Ceramic Society of Japan, Volume 128 (2020) no. 1, p. 24 | DOI:10.2109/jcersj2.19174
- Measurement of Dynamic Elastic Modulus and Poisson’s Ratio of Chemically Strengthened Glass, Materials, Volume 13 (2020) no. 24, p. 5644 | DOI:10.3390/ma13245644
- Towards improved cover glasses for photovoltaic devices, Progress in Photovoltaics: Research and Applications, Volume 28 (2020) no. 11, p. 1187 | DOI:10.1002/pip.3334
- Transparent TiO2 and ZnO Thin Films on Glass for UV Protection of PV Modules, Frontiers in Materials, Volume 6 (2019) | DOI:10.3389/fmats.2019.00259
- Mechanical Properties of Glass, Springer Handbook of Glass (2019), p. 227 | DOI:10.1007/978-3-319-93728-1_7
- , 2018 | DOI:10.12794/metadc1404587
- Dynamic failure of annealed and chemically strengthened glass under compression loading, Journal of Non-Crystalline Solids, Volume 499 (2018), p. 189 | DOI:10.1016/j.jnoncrysol.2018.07.043
- New insights into nanoindentation crack initiation in ion‐exchanged sodium aluminosilicate glass, Journal of the American Ceramic Society, Volume 101 (2018) no. 7, p. 2930 | DOI:10.1111/jace.15465
- Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications, Applied Microbiology and Biotechnology, Volume 101 (2017) no. 7, p. 2801 | DOI:10.1007/s00253-017-8099-6
- SPONTANEOUS FRACTURE IN THERMALLY STRENGTHENED GLASS - A REVIEW AND OUTLOOK, Ceramics - Silikaty (2017), p. 188 | DOI:10.13168/cs.2017.0016
- Interaction between Deformation and Crack Initiation under Vickers Indentation in Na2O–TiO2–SiO2 Glasses, Frontiers in Materials, Volume 4 (2017) | DOI:10.3389/fmats.2017.00006
- Influence of Cooling Rate on Cracking and Plastic Deformation during Impact and Indentation of Borosilicate Glasses, Frontiers in Materials, Volume 4 (2017) | DOI:10.3389/fmats.2017.00005
- Characterization of semiconducting mixed electronic-ionic TeO 2 V 2 O 5 Ag 2 O glasses by employing ultrasonic measurements and Vicker's microhardness, Journal of Alloys and Compounds, Volume 699 (2017), p. 601 | DOI:10.1016/j.jallcom.2016.12.372
- The effect of TiO2 on the structure of Na2O-CaO-SiO2 glasses and its implications for thermal and mechanical properties, Journal of Non-Crystalline Solids, Volume 471 (2017), p. 6 | DOI:10.1016/j.jnoncrysol.2017.04.013
- Influence of cooling rate on the crushing efficiency of solidified iron ore for recycled aggregates, International Journal of Mineral Processing, Volume 150 (2016), p. 9 | DOI:10.1016/j.minpro.2016.03.002
- Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range, Journal of Non-Crystalline Solids, Volume 434 (2016), p. 1 | DOI:10.1016/j.jnoncrysol.2015.12.002
- Composition dependence of crack formation probability in aluminoborosilicate glass, Journal of Non-Crystalline Solids, Volume 444 (2016), p. 31 | DOI:10.1016/j.jnoncrysol.2016.04.030
- Thermal Poling of Soda‐Lime Silica Glass with Nonblocking Electrodes—Part 2: Effects on Mechanical and Mechanochemical Properties, Journal of the American Ceramic Society, Volume 99 (2016) no. 4, p. 1231 | DOI:10.1111/jace.14080
- Young׳s modulus, Vickers hardness and indentation fracture toughness of alumino silicate glasses, Ceramics International, Volume 41 (2015) no. 6, p. 7267 | DOI:10.1016/j.ceramint.2015.01.144
- A 2000-year perspective on indentation crack resistance and brittleness of glass, Journal of Non-Crystalline Solids, Volume 408 (2015), p. 51 | DOI:10.1016/j.jnoncrysol.2014.10.012
- Mechanical properties of soda–lime–silica glasses with varying alkaline earth contents, Journal of Non-Crystalline Solids, Volume 429 (2015), p. 190 | DOI:10.1016/j.jnoncrysol.2015.08.013
- Elasticity, deformation and fracture of mixed fluoride–phosphate glasses, Journal of Non-Crystalline Solids, Volume 430 (2015), p. 99 | DOI:10.1016/j.jnoncrysol.2015.09.025
- Examen du modèle d’ampoule de E. Yoffe, Matériaux Techniques, Volume 103 (2015) no. 6, p. 604 | DOI:10.1051/mattech/2015059
- Driving force for indentation cracking in glass: composition, pressure and temperature dependence, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 373 (2015) no. 2038, p. 20140140 | DOI:10.1098/rsta.2014.0140
- Hardness of Oxynitride Glasses: Topological Origin, The Journal of Physical Chemistry B, Volume 119 (2015) no. 10, p. 4109 | DOI:10.1021/jp512235t
- References, Glass (2014), p. 367 | DOI:10.1002/9783527679461.refs
- Composition-Structure-Property Relations of Compressed Borosilicate Glasses, Physical Review Applied, Volume 2 (2014) no. 2 | DOI:10.1103/physrevapplied.2.024006
Cité par 35 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier