Comptes Rendus
Toward glasses with better indentation cracking resistance
Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 46-51.

The microcracking sequence (radial, median, lateral, and ring-like) arising at the glass surface under sharp contact loading and the extent to which these cracks develop is intimately related to the way the material attempts to relax the corresponding stress field. Two processes which are known to occur upon indentation are densification and isochoric shear flow. The contributions of both mechanisms were quantitatively assessed for glasses belonging to different chemical systems in previous papers [1–3]. In the present study, indentation cracking maps are provided, which offer guidelines to the design of glasses with better surface damage resistance based on their elastic properties and hardness.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2013.10.008
Mots-clés : Glass, Mechanical behavior, Indentation, Deformation, Cracking

Tanguy Rouxel 1 ; Pathikumar Sellappan 2 ; Fabrice Célarié 1 ; Patrick Houizot 1 ; Jean-Christophe Sanglebœuf 1

1 Applied Mechanics Laboratory of the University of Rennes 1, LARMAUR, ERL CNRS 6274, Université de Rennes-1, campus de Beaulieu, 35042 Rennes cedex, France
2 Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, IL, USA
@article{CRMECA_2014__342_1_46_0,
     author = {Tanguy Rouxel and Pathikumar Sellappan and Fabrice C\'elari\'e and Patrick Houizot and Jean-Christophe Sangleb{\oe}uf},
     title = {Toward glasses with better indentation cracking resistance},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {46--51},
     publisher = {Elsevier},
     volume = {342},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crme.2013.10.008},
     language = {en},
}
TY  - JOUR
AU  - Tanguy Rouxel
AU  - Pathikumar Sellappan
AU  - Fabrice Célarié
AU  - Patrick Houizot
AU  - Jean-Christophe Sanglebœuf
TI  - Toward glasses with better indentation cracking resistance
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 46
EP  - 51
VL  - 342
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2013.10.008
LA  - en
ID  - CRMECA_2014__342_1_46_0
ER  - 
%0 Journal Article
%A Tanguy Rouxel
%A Pathikumar Sellappan
%A Fabrice Célarié
%A Patrick Houizot
%A Jean-Christophe Sanglebœuf
%T Toward glasses with better indentation cracking resistance
%J Comptes Rendus. Mécanique
%D 2014
%P 46-51
%V 342
%N 1
%I Elsevier
%R 10.1016/j.crme.2013.10.008
%G en
%F CRMECA_2014__342_1_46_0
Tanguy Rouxel; Pathikumar Sellappan; Fabrice Célarié; Patrick Houizot; Jean-Christophe Sanglebœuf. Toward glasses with better indentation cracking resistance. Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 46-51. doi : 10.1016/j.crme.2013.10.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.008/

[1] S. Yoshida et al. Quantitative evaluation of indentation-induced densification in glass, J. Mater. Res., Volume 20 (2005), pp. 3404-3412

[2] T. Rouxel et al. Indentation deformation mechanism in glass: Densification versus shear flow, J. Appl. Phys., Volume 107 (2010), p. 094903

[3] P. Sellappan et al. Composition dependence of indentation deformation and indentation cracking in glass, Acta Mater., Volume 61 (2013), pp. 5949-5965

[4] A. Arora et al. Indentation deformation/fracture of normal and anomalous glasses, J. Non-Cryst. Solids, Volume 31 (1979), pp. 415-428

[5] A.G. Evans; T.R. Wilshaw Quasi-static particle damage in brittle solids – I. Observations, analysis and implications, Acta Metall., Volume 24 (1976), pp. 939-956

[6] B.R. Lawn; A.G. Evans A model for crack initiation in elastic/plastic indentation fields, J. Mater. Sci., Volume 12 (1977), pp. 2195-2199

[7] J.T. Hagan; M.V. Swain The origin of median and lateral cracks around plastic indents in brittle materials, J. Phys. D: Appl. Phys., Volume 11 (1978), pp. 2091-2102

[8] R.F. Cook; G.M. Pharr Direct observation and analysis of indentation cracking in glasses and ceramics, J. Am. Ceram. Soc., Volume 73 (1990), pp. 787-817

[9] P. Sellappan et al. Elastic properties and surface damage resistance of nitrogen-rich (Ca, Sr)–Si–O–N glasses, J. Non-Cryst. Solids, Volume 356 (2010), pp. 2120-2126

[10] V. Keryvin; V.H. Hoang; J. Shen On the deformation morphology of bulk metallic glasses underneath a Vickers indentation, Intermetallics, Volume 17 (2009), p. 211

[11] U. Ramamurty et al. Hardness and plastic deformation in a bulk metallic glass, Acta Mater., Volume 53 (2005), pp. 705-717

[12] K. Kese et al. Effect of high temperature ambience during sharp indentation on the residual contact site properties, J. Phys. D: Appl. Phys., Volume 41 (2008), p. 074025

[13] J. Boussinesq Applications des potentiels à lʼétude de lʼéquilibre et du mouvement des solides élastiques, Gauthier-Villars, Paris, 1885

[14] A.E.H. Love, Dover Pub. Inc. (1927), p. 127

[15] E.H. Yoffe Elastic stress fields caused by indenting brittle materials, Philos. Mag. A, Volume 46 (1982), pp. 617-628

[16] I.N. Sneddon The relation between load and penetration in the axi-symmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci., Volume 3 (1965), pp. 47-57

[17] S. Yoshida et al. Shrinkage behavior of Knoop indentations in silica and soda-lime-silica glasses, J. Am. Ceram. Soc., Volume 84 (2001), pp. 2141-2143

[18] J.E. Neely; J.D. Mackenzie Hardness and low-temperature deformation of silica glass, J. Mater. Sci., Volume 3 (1968), pp. 603-609

[19] Y. Kato et al. Effect of densification on crack initiation under Vickers indentation test, J. Non-Cryst. Solids, Volume 356 (2010), pp. 1768-1773

[20] T. Rouxel Poissonʼs ratio and the densification of glass under high pressure, Phys. Rev. Lett., Volume 100 (2008), p. 225501

[21] G.N. Greaves et al. Poissonʼs ratio and modern materials, Nat. Mater., Volume 10 (2011), pp. 823-837

[22] E. Hamm; F. Tapia; F. Melo Dynamics of shear bands in a dense granular material forced by a slowly moving rigid body, Phys. Rev. E, Volume 84 (2011), p. 041304

[23] S.V. Madge et al. Toughness, extrinsic effects and Poissonʼs ratio of bulk metallic glasses, Acta Mater., Volume 60 (2012), pp. 4800-4809

[24] C.R. Kurkjian; G.W. Kammlott; M.M. Chaudhri Indentation behavior of soda-lime silica glass, fused silica, and single-crystal quartz at liquid nitrogen temperature, J. Am. Ceram. Soc., Volume 78 (1995), pp. 737-744

[25] J. Sehgal; S. Ito A new low-brittleness glass in the soda-lime-silica glass family, J. Am. Ceram. Soc., Volume 81 (1998), pp. 2485-2488

[26] J.H. Lee et al. Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials, Acta Mater., Volume 60 (2012), pp. 5448-5467

[27] D.J. Oliver et al. Nanoindentation of ion-implanted crystalline germanium, Phys. Rev. B, Volume 80 (2009), p. 115210

  • Haidong Liu; Yunfeng Shi; Randall E. Youngman; Liping Huang Role of densification in deformation behaviors of model metallic glasses under 3-D nanoindentation studied in molecular dynamics simulation, Journal of Non-Crystalline Solids, Volume 638 (2024), p. 123071 | DOI:10.1016/j.jnoncrysol.2024.123071
  • Aubrey L. Fry; Christy George; Ian Slagle; Harry Hawbaker; Steve Feller; Seong H. Kim; John C. Mauro Field strength effect on structure, hardness, and crack resistance in single modifier aluminoborosilicate glasses, Journal of the American Ceramic Society, Volume 106 (2023) no. 2, p. 951 | DOI:10.1111/jace.18796
  • Aubrey L. Fry; Andrew L. Ogrinc; Seong H. Kim; John C. Mauro Field strength effect on elastoplastic behavior of aluminoborosilicate glass: I. Elastic moduli and indentation size effect, Journal of the American Ceramic Society, Volume 106 (2023) no. 8, p. 4664 | DOI:10.1111/jace.19154
  • Aubrey L. Fry; Andrew L. Ogrinc; Seong H. Kim; John C. Mauro Field strength effect on elastoplastic behavior of aluminoborosilicate glass: II. Volumetric recovery, Journal of the American Ceramic Society, Volume 106 (2023) no. 9, p. 5213 | DOI:10.1111/jace.19152
  • Stefan Karlsson Compositional Effects on Indentation Mechanical Properties of Chemically Strengthened TiO2-Doped Soda Lime Silicate Glasses, Materials, Volume 15 (2022) no. 2, p. 577 | DOI:10.3390/ma15020577
  • Tanguy Rouxel; Jae-il Jang; Upadrasta Ramamurty Indentation of glasses, Progress in Materials Science, Volume 121 (2021), p. 100834 | DOI:10.1016/j.pmatsci.2021.100834
  • Kyudae Shim; Mohamed Abdellatif; Jeryang Park; Dongkyun Kim Antifouling effect of water-soluble phosphate glass frit for filtration plants, Folia Microbiologica, Volume 65 (2020) no. 2, p. 363 | DOI:10.1007/s12223-019-00743-x
  • Brian C. Davis; G. Scott Glaesemann; Ivar Reimanis Sharp indentation stress fields in fused silica: Finite element analysis and Yoffe analytic model, Journal of the American Ceramic Society, Volume 103 (2020) no. 12, p. 7135 | DOI:10.1111/jace.17399
  • Hidekatsu MOROZUMI; Satoshi YOSHIDA; Jun MATSUOKA Effect of B2O3 substitution for SiO2 in alkali aluminoborosilicate glasses on chemical strengthening, Journal of the Ceramic Society of Japan, Volume 128 (2020) no. 1, p. 24 | DOI:10.2109/jcersj2.19174
  • Sun-Youn Ryou; Chang-Soon Lee; In-Sik Cho; Auezhan Amanov Measurement of Dynamic Elastic Modulus and Poisson’s Ratio of Chemically Strengthened Glass, Materials, Volume 13 (2020) no. 24, p. 5644 | DOI:10.3390/ma13245644
  • Benjamin L. Allsopp; Robin Orman; Simon R. Johnson; Ian Baistow; Gavin Sanderson; Peter Sundberg; Christina Stålhandske; Lina Grund; Anne Andersson; Jonathan Booth; Paul A. Bingham; Stefan Karlsson Towards improved cover glasses for photovoltaic devices, Progress in Photovoltaics: Research and Applications, Volume 28 (2020) no. 11, p. 1187 | DOI:10.1002/pip.3334
  • Wilhelm Johansson; Albert Peralta; Bo Jonson; Srinivasan Anand; Lars Österlund; Stefan Karlsson Transparent TiO2 and ZnO Thin Films on Glass for UV Protection of PV Modules, Frontiers in Materials, Volume 6 (2019) | DOI:10.3389/fmats.2019.00259
  • Jean-Pierre Guin; Yann Gueguen Mechanical Properties of Glass, Springer Handbook of Glass (2019), p. 227 | DOI:10.1007/978-3-319-93728-1_7
  • , 2018 | DOI:10.12794/metadc1404587
  • Muhammad Zakir Sheikh; Zhen Wang; Tao Suo; Yulong Li; Fenghua Zhou; Sohail Ahmed; Uzair Ahmed Dar; Yanpei Wang Dynamic failure of annealed and chemically strengthened glass under compression loading, Journal of Non-Crystalline Solids, Volume 499 (2018), p. 189 | DOI:10.1016/j.jnoncrysol.2018.07.043
  • Xiaoyu Li; Liangbao Jiang; Iman Mohagheghian; John P. Dear; Lei Li; Yue Yan New insights into nanoindentation crack initiation in ion‐exchanged sodium aluminosilicate glass, Journal of the American Ceramic Society, Volume 101 (2018) no. 7, p. 2930 | DOI:10.1111/jace.15465
  • Kyudae Shim; Mohamed Abdellatif; Eunsoo Choi; Dongkyun Kim Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications, Applied Microbiology and Biotechnology, Volume 101 (2017) no. 7, p. 2801 | DOI:10.1007/s00253-017-8099-6
  • Stefan Karlsson SPONTANEOUS FRACTURE IN THERMALLY STRENGTHENED GLASS - A REVIEW AND OUTLOOK, Ceramics - Silikaty (2017), p. 188 | DOI:10.13168/cs.2017.0016
  • Garth Scannell; Denis Laille; Fabrice Célarié; Liping Huang; Tanguy Rouxel Interaction between Deformation and Crack Initiation under Vickers Indentation in Na2O–TiO2–SiO2 Glasses, Frontiers in Materials, Volume 4 (2017) | DOI:10.3389/fmats.2017.00006
  • Christoffer Zehnder; Sebastian Bruns; Jan-Niklas Peltzer; Karsten Durst; Sandra Korte-Kerzel; Doris Möncke Influence of Cooling Rate on Cracking and Plastic Deformation during Impact and Indentation of Borosilicate Glasses, Frontiers in Materials, Volume 4 (2017) | DOI:10.3389/fmats.2017.00005
  • Dariush Souri; Farhang Honarvar; Zahra Esmaeili Tahan Characterization of semiconducting mixed electronic-ionic TeO 2 V 2 O 5 Ag 2 O glasses by employing ultrasonic measurements and Vicker's microhardness, Journal of Alloys and Compounds, Volume 699 (2017), p. 601 | DOI:10.1016/j.jallcom.2016.12.372
  • René Limbach; Stefan Karlsson; Garth Scannell; Renny Mathew; Mattias Edén; Lothar Wondraczek The effect of TiO2 on the structure of Na2O-CaO-SiO2 glasses and its implications for thermal and mechanical properties, Journal of Non-Crystalline Solids, Volume 471 (2017), p. 6 | DOI:10.1016/j.jnoncrysol.2017.04.013
  • Gyu-In Shim; Seong-Hwan Kim; Doo-Jin Paik; Moon-Hi Hong; Se-Young Choi Influence of cooling rate on the crushing efficiency of solidified iron ore for recycled aggregates, International Journal of Mineral Processing, Volume 150 (2016), p. 9 | DOI:10.1016/j.minpro.2016.03.002
  • A. Pönitzsch; M. Nofz; L. Wondraczek; J. Deubener Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range, Journal of Non-Crystalline Solids, Volume 434 (2016), p. 1 | DOI:10.1016/j.jnoncrysol.2015.12.002
  • Hidekatsu Morozumi; Satoshi Yoshida; Jun Matsuoka Composition dependence of crack formation probability in aluminoborosilicate glass, Journal of Non-Crystalline Solids, Volume 444 (2016), p. 31 | DOI:10.1016/j.jnoncrysol.2016.04.030
  • Hongtu He; Jiawei Luo; Linmao Qian; Carlo G. Pantano; Seong H. Kim; J. Mauro Thermal Poling of Soda‐Lime Silica Glass with Nonblocking Electrodes—Part 2: Effects on Mechanical and Mechanochemical Properties, Journal of the American Ceramic Society, Volume 99 (2016) no. 4, p. 1231 | DOI:10.1111/jace.14080
  • Mirko Tiegel; Reza Hosseinabadi; Stefan Kuhn; Andreas Herrmann; Christian Rüssel Young׳s modulus, Vickers hardness and indentation fracture toughness of alumino silicate glasses, Ceramics International, Volume 41 (2015) no. 6, p. 7267 | DOI:10.1016/j.ceramint.2015.01.144
  • Ilhan Hasdemir; Simon Striepe; Joachim Deubener; Klaus Simon A 2000-year perspective on indentation crack resistance and brittleness of glass, Journal of Non-Crystalline Solids, Volume 408 (2015), p. 51 | DOI:10.1016/j.jnoncrysol.2014.10.012
  • Erhan Kilinc; Russell J. Hand Mechanical properties of soda–lime–silica glasses with varying alkaline earth contents, Journal of Non-Crystalline Solids, Volume 429 (2015), p. 190 | DOI:10.1016/j.jnoncrysol.2015.08.013
  • R. Limbach; B.P. Rodrigues; D. Möncke; L. Wondraczek Elasticity, deformation and fracture of mixed fluoride–phosphate glasses, Journal of Non-Crystalline Solids, Volume 430 (2015), p. 99 | DOI:10.1016/j.jnoncrysol.2015.09.025
  • Manuel Buisson; Tanguy Rouxel Examen du modèle d’ampoule de E. Yoffe, Matériaux Techniques, Volume 103 (2015) no. 6, p. 604 | DOI:10.1051/mattech/2015059
  • Tanguy Rouxel Driving force for indentation cracking in glass: composition, pressure and temperature dependence, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 373 (2015) no. 2038, p. 20140140 | DOI:10.1098/rsta.2014.0140
  • Georgiana L. Paraschiv; Sinue Gomez; John C. Mauro; Lothar Wondraczek; Yuanzheng Yue; Morten M. Smedskjaer Hardness of Oxynitride Glasses: Topological Origin, The Journal of Physical Chemistry B, Volume 119 (2015) no. 10, p. 4109 | DOI:10.1021/jp512235t
  • References, Glass (2014), p. 367 | DOI:10.1002/9783527679461.refs
  • Mouritz N. Svenson; Tobias K. Bechgaard; Søren D. Fuglsang; Rune H. Pedersen; Anders Ø. Tjell; Martin B. Østergaard; Randall E. Youngman; John C. Mauro; Sylwester J. Rzoska; Michal Bockowski; Morten M. Smedskjaer Composition-Structure-Property Relations of Compressed Borosilicate Glasses, Physical Review Applied, Volume 2 (2014) no. 2 | DOI:10.1103/physrevapplied.2.024006

Cité par 35 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: