The microcracking sequence (radial, median, lateral, and ring-like) arising at the glass surface under sharp contact loading and the extent to which these cracks develop is intimately related to the way the material attempts to relax the corresponding stress field. Two processes which are known to occur upon indentation are densification and isochoric shear flow. The contributions of both mechanisms were quantitatively assessed for glasses belonging to different chemical systems in previous papers [1–3]. In the present study, indentation cracking maps are provided, which offer guidelines to the design of glasses with better surface damage resistance based on their elastic properties and hardness.
Accepted:
Published online:
Tanguy Rouxel 1; Pathikumar Sellappan 2; Fabrice Célarié 1; Patrick Houizot 1; Jean-Christophe Sanglebœuf 1
@article{CRMECA_2014__342_1_46_0, author = {Tanguy Rouxel and Pathikumar Sellappan and Fabrice C\'elari\'e and Patrick Houizot and Jean-Christophe Sangleb{\oe}uf}, title = {Toward glasses with better indentation cracking resistance}, journal = {Comptes Rendus. M\'ecanique}, pages = {46--51}, publisher = {Elsevier}, volume = {342}, number = {1}, year = {2014}, doi = {10.1016/j.crme.2013.10.008}, language = {en}, }
TY - JOUR AU - Tanguy Rouxel AU - Pathikumar Sellappan AU - Fabrice Célarié AU - Patrick Houizot AU - Jean-Christophe Sanglebœuf TI - Toward glasses with better indentation cracking resistance JO - Comptes Rendus. Mécanique PY - 2014 SP - 46 EP - 51 VL - 342 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2013.10.008 LA - en ID - CRMECA_2014__342_1_46_0 ER -
%0 Journal Article %A Tanguy Rouxel %A Pathikumar Sellappan %A Fabrice Célarié %A Patrick Houizot %A Jean-Christophe Sanglebœuf %T Toward glasses with better indentation cracking resistance %J Comptes Rendus. Mécanique %D 2014 %P 46-51 %V 342 %N 1 %I Elsevier %R 10.1016/j.crme.2013.10.008 %G en %F CRMECA_2014__342_1_46_0
Tanguy Rouxel; Pathikumar Sellappan; Fabrice Célarié; Patrick Houizot; Jean-Christophe Sanglebœuf. Toward glasses with better indentation cracking resistance. Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 46-51. doi : 10.1016/j.crme.2013.10.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.008/
[1] et al. Quantitative evaluation of indentation-induced densification in glass, J. Mater. Res., Volume 20 (2005), pp. 3404-3412
[2] et al. Indentation deformation mechanism in glass: Densification versus shear flow, J. Appl. Phys., Volume 107 (2010), p. 094903
[3] et al. Composition dependence of indentation deformation and indentation cracking in glass, Acta Mater., Volume 61 (2013), pp. 5949-5965
[4] et al. Indentation deformation/fracture of normal and anomalous glasses, J. Non-Cryst. Solids, Volume 31 (1979), pp. 415-428
[5] Quasi-static particle damage in brittle solids – I. Observations, analysis and implications, Acta Metall., Volume 24 (1976), pp. 939-956
[6] A model for crack initiation in elastic/plastic indentation fields, J. Mater. Sci., Volume 12 (1977), pp. 2195-2199
[7] The origin of median and lateral cracks around plastic indents in brittle materials, J. Phys. D: Appl. Phys., Volume 11 (1978), pp. 2091-2102
[8] Direct observation and analysis of indentation cracking in glasses and ceramics, J. Am. Ceram. Soc., Volume 73 (1990), pp. 787-817
[9] et al. Elastic properties and surface damage resistance of nitrogen-rich (Ca, Sr)–Si–O–N glasses, J. Non-Cryst. Solids, Volume 356 (2010), pp. 2120-2126
[10] On the deformation morphology of bulk metallic glasses underneath a Vickers indentation, Intermetallics, Volume 17 (2009), p. 211
[11] et al. Hardness and plastic deformation in a bulk metallic glass, Acta Mater., Volume 53 (2005), pp. 705-717
[12] et al. Effect of high temperature ambience during sharp indentation on the residual contact site properties, J. Phys. D: Appl. Phys., Volume 41 (2008), p. 074025
[13] Applications des potentiels à lʼétude de lʼéquilibre et du mouvement des solides élastiques, Gauthier-Villars, Paris, 1885
[14]
, Dover Pub. Inc. (1927), p. 127[15] Elastic stress fields caused by indenting brittle materials, Philos. Mag. A, Volume 46 (1982), pp. 617-628
[16] The relation between load and penetration in the axi-symmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci., Volume 3 (1965), pp. 47-57
[17] et al. Shrinkage behavior of Knoop indentations in silica and soda-lime-silica glasses, J. Am. Ceram. Soc., Volume 84 (2001), pp. 2141-2143
[18] Hardness and low-temperature deformation of silica glass, J. Mater. Sci., Volume 3 (1968), pp. 603-609
[19] et al. Effect of densification on crack initiation under Vickers indentation test, J. Non-Cryst. Solids, Volume 356 (2010), pp. 1768-1773
[20] Poissonʼs ratio and the densification of glass under high pressure, Phys. Rev. Lett., Volume 100 (2008), p. 225501
[21] et al. Poissonʼs ratio and modern materials, Nat. Mater., Volume 10 (2011), pp. 823-837
[22] Dynamics of shear bands in a dense granular material forced by a slowly moving rigid body, Phys. Rev. E, Volume 84 (2011), p. 041304
[23] et al. Toughness, extrinsic effects and Poissonʼs ratio of bulk metallic glasses, Acta Mater., Volume 60 (2012), pp. 4800-4809
[24] Indentation behavior of soda-lime silica glass, fused silica, and single-crystal quartz at liquid nitrogen temperature, J. Am. Ceram. Soc., Volume 78 (1995), pp. 737-744
[25] A new low-brittleness glass in the soda-lime-silica glass family, J. Am. Ceram. Soc., Volume 81 (1998), pp. 2485-2488
[26] et al. Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials, Acta Mater., Volume 60 (2012), pp. 5448-5467
[27] et al. Nanoindentation of ion-implanted crystalline germanium, Phys. Rev. B, Volume 80 (2009), p. 115210
Cited by Sources:
Comments - Policy