Comptes Rendus
Toward glasses with better indentation cracking resistance
Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 46-51.

The microcracking sequence (radial, median, lateral, and ring-like) arising at the glass surface under sharp contact loading and the extent to which these cracks develop is intimately related to the way the material attempts to relax the corresponding stress field. Two processes which are known to occur upon indentation are densification and isochoric shear flow. The contributions of both mechanisms were quantitatively assessed for glasses belonging to different chemical systems in previous papers [1–3]. In the present study, indentation cracking maps are provided, which offer guidelines to the design of glasses with better surface damage resistance based on their elastic properties and hardness.

Published online:
DOI: 10.1016/j.crme.2013.10.008
Keywords: Glass, Mechanical behavior, Indentation, Deformation, Cracking

Tanguy Rouxel 1; Pathikumar Sellappan 2; Fabrice Célarié 1; Patrick Houizot 1; Jean-Christophe Sanglebœuf 1

1 Applied Mechanics Laboratory of the University of Rennes 1, LARMAUR, ERL CNRS 6274, Université de Rennes-1, campus de Beaulieu, 35042 Rennes cedex, France
2 Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, IL, USA
     author = {Tanguy Rouxel and Pathikumar Sellappan and Fabrice C\'elari\'e and Patrick Houizot and Jean-Christophe Sangleb{\oe}uf},
     title = {Toward glasses with better indentation cracking resistance},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {46--51},
     publisher = {Elsevier},
     volume = {342},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crme.2013.10.008},
     language = {en},
AU  - Tanguy Rouxel
AU  - Pathikumar Sellappan
AU  - Fabrice Célarié
AU  - Patrick Houizot
AU  - Jean-Christophe Sanglebœuf
TI  - Toward glasses with better indentation cracking resistance
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 46
EP  - 51
VL  - 342
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2013.10.008
LA  - en
ID  - CRMECA_2014__342_1_46_0
ER  - 
%0 Journal Article
%A Tanguy Rouxel
%A Pathikumar Sellappan
%A Fabrice Célarié
%A Patrick Houizot
%A Jean-Christophe Sanglebœuf
%T Toward glasses with better indentation cracking resistance
%J Comptes Rendus. Mécanique
%D 2014
%P 46-51
%V 342
%N 1
%I Elsevier
%R 10.1016/j.crme.2013.10.008
%G en
%F CRMECA_2014__342_1_46_0
Tanguy Rouxel; Pathikumar Sellappan; Fabrice Célarié; Patrick Houizot; Jean-Christophe Sanglebœuf. Toward glasses with better indentation cracking resistance. Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 46-51. doi : 10.1016/j.crme.2013.10.008.

[1] S. Yoshida et al. Quantitative evaluation of indentation-induced densification in glass, J. Mater. Res., Volume 20 (2005), pp. 3404-3412

[2] T. Rouxel et al. Indentation deformation mechanism in glass: Densification versus shear flow, J. Appl. Phys., Volume 107 (2010), p. 094903

[3] P. Sellappan et al. Composition dependence of indentation deformation and indentation cracking in glass, Acta Mater., Volume 61 (2013), pp. 5949-5965

[4] A. Arora et al. Indentation deformation/fracture of normal and anomalous glasses, J. Non-Cryst. Solids, Volume 31 (1979), pp. 415-428

[5] A.G. Evans; T.R. Wilshaw Quasi-static particle damage in brittle solids – I. Observations, analysis and implications, Acta Metall., Volume 24 (1976), pp. 939-956

[6] B.R. Lawn; A.G. Evans A model for crack initiation in elastic/plastic indentation fields, J. Mater. Sci., Volume 12 (1977), pp. 2195-2199

[7] J.T. Hagan; M.V. Swain The origin of median and lateral cracks around plastic indents in brittle materials, J. Phys. D: Appl. Phys., Volume 11 (1978), pp. 2091-2102

[8] R.F. Cook; G.M. Pharr Direct observation and analysis of indentation cracking in glasses and ceramics, J. Am. Ceram. Soc., Volume 73 (1990), pp. 787-817

[9] P. Sellappan et al. Elastic properties and surface damage resistance of nitrogen-rich (Ca, Sr)–Si–O–N glasses, J. Non-Cryst. Solids, Volume 356 (2010), pp. 2120-2126

[10] V. Keryvin; V.H. Hoang; J. Shen On the deformation morphology of bulk metallic glasses underneath a Vickers indentation, Intermetallics, Volume 17 (2009), p. 211

[11] U. Ramamurty et al. Hardness and plastic deformation in a bulk metallic glass, Acta Mater., Volume 53 (2005), pp. 705-717

[12] K. Kese et al. Effect of high temperature ambience during sharp indentation on the residual contact site properties, J. Phys. D: Appl. Phys., Volume 41 (2008), p. 074025

[13] J. Boussinesq Applications des potentiels à lʼétude de lʼéquilibre et du mouvement des solides élastiques, Gauthier-Villars, Paris, 1885

[14] A.E.H. Love, Dover Pub. Inc. (1927), p. 127

[15] E.H. Yoffe Elastic stress fields caused by indenting brittle materials, Philos. Mag. A, Volume 46 (1982), pp. 617-628

[16] I.N. Sneddon The relation between load and penetration in the axi-symmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci., Volume 3 (1965), pp. 47-57

[17] S. Yoshida et al. Shrinkage behavior of Knoop indentations in silica and soda-lime-silica glasses, J. Am. Ceram. Soc., Volume 84 (2001), pp. 2141-2143

[18] J.E. Neely; J.D. Mackenzie Hardness and low-temperature deformation of silica glass, J. Mater. Sci., Volume 3 (1968), pp. 603-609

[19] Y. Kato et al. Effect of densification on crack initiation under Vickers indentation test, J. Non-Cryst. Solids, Volume 356 (2010), pp. 1768-1773

[20] T. Rouxel Poissonʼs ratio and the densification of glass under high pressure, Phys. Rev. Lett., Volume 100 (2008), p. 225501

[21] G.N. Greaves et al. Poissonʼs ratio and modern materials, Nat. Mater., Volume 10 (2011), pp. 823-837

[22] E. Hamm; F. Tapia; F. Melo Dynamics of shear bands in a dense granular material forced by a slowly moving rigid body, Phys. Rev. E, Volume 84 (2011), p. 041304

[23] S.V. Madge et al. Toughness, extrinsic effects and Poissonʼs ratio of bulk metallic glasses, Acta Mater., Volume 60 (2012), pp. 4800-4809

[24] C.R. Kurkjian; G.W. Kammlott; M.M. Chaudhri Indentation behavior of soda-lime silica glass, fused silica, and single-crystal quartz at liquid nitrogen temperature, J. Am. Ceram. Soc., Volume 78 (1995), pp. 737-744

[25] J. Sehgal; S. Ito A new low-brittleness glass in the soda-lime-silica glass family, J. Am. Ceram. Soc., Volume 81 (1998), pp. 2485-2488

[26] J.H. Lee et al. Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials, Acta Mater., Volume 60 (2012), pp. 5448-5467

[27] D.J. Oliver et al. Nanoindentation of ion-implanted crystalline germanium, Phys. Rev. B, Volume 80 (2009), p. 115210

Cited by Sources:

Comments - Policy