Comptes Rendus
Cell polarization energy and its implications for cell migration
Comptes Rendus. Mécanique, Volume 342 (2014) no. 5, pp. 334-346.

Cells usually have a polarized shape in directional cell migration. This cell polarity may result from external cues, such as a gradient of chemo-attractants (chemotaxis), or a gradient of mechanical properties of substrate (durotaxis), and it can also arise from internal cues so that the cells self-polarize spontaneously and maintain the polar motile state for a long time. However, the mechanisms that control cell polarization have not been fully understood, and particularly, the relationship between the polarized shape and cell migration behaviors is not yet clear. In this study, we propose an energy model to study the cell polarization energy by considering the effect of matrix rigidity, cell shape, and organization of the cytoskeleton. We then propose a parameter called “motility factor” for depicting the relationship between the cell shape and the driving force of cell migration. We demonstrate that the fibroblast-like cell shape and keratocyte-like shape both have an optimal polarization angle corresponding to the most stable cell shape. Fibroblast-like cell shape also has an optimal tail length of the polarization. Furthermore, we find that the cell free energy biphasically depends on the matrix rigidity, i.e. that there is an optimum matrix rigidity for the most stable shape. And the motility factor also biphasically depends on the matrix rigidity, but the trends of the dependence are opposite to that of cell's free energy, which implies an optimum matrix rigidity for the highest speed. The optimum matrix rigidity for the most stable cell shape and that for the highest cell speed are consistent, suggesting that the most stable cell shape is favorable to the fastest cell migration. This study provides important insights into the relationship between cell polarization shape and cell migration behaviors.

Published online:
DOI: 10.1016/j.crme.2014.02.006
Keywords: Cell shape, Cell polarity, Matrix rigidity, Cell adhesion, Driving force of cell migration

Yuan Zhong 1; Shijie He 1; Chunying Dong 1; Baohua Ji 1; Gengkai Hu 1

1 Biomechanics and biomaterials laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
     author = {Yuan Zhong and Shijie He and Chunying Dong and Baohua Ji and Gengkai Hu},
     title = {Cell polarization energy and its implications for cell migration},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {334--346},
     publisher = {Elsevier},
     volume = {342},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crme.2014.02.006},
     language = {en},
AU  - Yuan Zhong
AU  - Shijie He
AU  - Chunying Dong
AU  - Baohua Ji
AU  - Gengkai Hu
TI  - Cell polarization energy and its implications for cell migration
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 334
EP  - 346
VL  - 342
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2014.02.006
LA  - en
ID  - CRMECA_2014__342_5_334_0
ER  - 
%0 Journal Article
%A Yuan Zhong
%A Shijie He
%A Chunying Dong
%A Baohua Ji
%A Gengkai Hu
%T Cell polarization energy and its implications for cell migration
%J Comptes Rendus. Mécanique
%D 2014
%P 334-346
%V 342
%N 5
%I Elsevier
%R 10.1016/j.crme.2014.02.006
%G en
%F CRMECA_2014__342_5_334_0
Yuan Zhong; Shijie He; Chunying Dong; Baohua Ji; Gengkai Hu. Cell polarization energy and its implications for cell migration. Comptes Rendus. Mécanique, Volume 342 (2014) no. 5, pp. 334-346. doi : 10.1016/j.crme.2014.02.006.

[1] A. Mogilner; K. Keren The shape of motile cells, Curr. Biol., Volume 19 (2009), p. R762-R771

[2] T. Mseka; J.R. Bamburg; L.P. Cramer ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization, J. Cell Sci., Volume 120 (2007), pp. 4332-4344

[3] M. Prager-Khoutorsky; A. Lichtenstein; R. Krishnan; K. Rajendran; A. Mayo; Z. Kam; B. Geiger; A.D. Bershadsky Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing, Nat. Cell Biol., Volume 13 (2011), pp. 1457-1465

[4] A.B. Verkhovsky; T.M. Svitkina; G.G. Borisy Self-polarization and directional motility of cytoplasm, Curr. Biol., Volume 9 (1999), pp. 11-20

[5] K. Burton; J.H. Park; D.L. Taylor Keratocytes generate traction forces in two phases, Mol. Biol. Cell, Volume 10 (1999), pp. 3745-3769

[6] S. Munevar; Y.L. Wang; M. Dembo Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration, Mol. Biol. Cell, Volume 12 (2001), pp. 3947-3954

[7] L.P. Cramer Forming the cell rear first: breaking cell symmetry to trigger directed cell migration, Nat. Cell Biol., Volume 12 (2010), pp. 628-632

[8] T. Mseka; L.P. Cramer Actin depolymerization-based force retracts the cell rear in polarizing and migrating cells, Curr. Biol., Volume 21 (2011), pp. 2085-2091

[9] Y.L. Wang Reorganization of actin filament bundles in living fibroblasts, J. Cell Biol., Volume 99 (1984), pp. 1478-1485

[10] A.B. Verkhovsky; T.M. Svitkina; G.G. Borisy Myosin-II filament assemblies in the active lamella of fibroblasts—their morphogenesis and role in the formation of actin filament bundles, J. Cell Biol., Volume 131 (1995), pp. 989-1002

[11] T.M. Svitkina; A.B. Verkhovsky; K.M. McQuade; G.G. Borisy Analysis of the actin–myosin II system in fish epidermal keratocytes: mechanism of cell body translocation, J. Cell Biol., Volume 139 (1997), pp. 397-415

[12] M.M. Kozlov; A. Mogilner Model of polarization and bistability of cell fragments, Biophys. J., Volume 93 (2007), pp. 3811-3819

[13] B. Vianay; J. Kaefer; E. Planus; M. Block; F. Graner; H. Guillou Single cells spreading on a protein lattice adopt an energy minimizing shape, Phys. Rev. Lett., Volume 105 (2010)

[14] Y. Ujihara; M. Nakamura; H. Miyazaki; S. Wada Proposed spring network cell model based on a minimum energy concept, Ann. Biomed. Eng., Volume 38 (2010), pp. 1530-1538

[15] X. Du; K. Doubrovinski; M. Osterfield Self-organized cell motility from motor–filament interactions, Biophys. J., Volume 102 (2012), pp. 1738-1745

[16] R. Bar-Ziv; T. Tlusty; E. Moses; S.A. Safran; A. Bershadsky Pearling in cells: a clue to understanding cell shape, Proc. Natl. Acad. Sci. USA, Volume 96 (1999), pp. 10140-10145

[17] I.B. Bischofs; S.S. Schmidt; U.S. Schwarz Effect of adhesion geometry and rigidity on cellular force distributions, Phys. Rev. Lett., Volume 103 (2009), p. 048101

[18] C.B. Khatiwala; S.R. Peyton; A.J. Putnam Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells, Am. J. Physiol., Cell Physiol., Volume 290 (2006), p. C1640-C1650

[19] S.R. Peyton; A.J. Putnam Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion, J. Cell. Physiol., Volume 204 (2005), pp. 198-209

[20] D.-H. Kim; K. Han; K. Gupta; K.W. Kwon; K.-Y. Suh; A. Levchenko Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients, Biomaterials, Volume 30 (2009), pp. 5433-5444

[21] A. Mogilner; G. Oster Polymer motors: pushing out the front and pulling up the back, Curr. Biol., Volume 13 (2003), p. R721-R733

[22] A. Mogilner Mathematics of cell motility: have we got its number?, J. Math. Biol., Volume 58 (2009), pp. 105-134

[23] I.V. Dokukina; M.E. Gracheva A model of fibroblast motility on substrates with different rigidities, Biophys. J., Volume 98 (2010), pp. 2794-2803

[24] A.S. Sarvestani A model for cell motility on soft bio-adhesive substrates, J. Biomech., Volume 44 (2011), pp. 755-758

[25] J. Lee; A. Ishihara; J.A. Theriot; K. Jacobson Principles of locomotion for simple-shaped cells, Nature, Volume 362 (1993), pp. 167-171

[26] K. Keren; Z. Pincus; G.M. Allen; E.L. Barnhart; G. Marriott; A. Mogilner; J.A. Theriot Mechanism of shape determination in motile cells, Nature, Volume 453 (2008), pp. 475-480

[27] E.L. Barnhart; K.-C. Lee; K. Keren; A. Mogilner; J.A. Theriot An adhesion-dependent switch between mechanisms that determine motile cell shape, PLoS Biol., Volume 9 (2011)

[28] M.S. Zand; G. Albrechtbuehler What structures, besides adhesions, prevent spread cells from rounding up, Cell Motil. Cytoskelet., Volume 13 (1989), pp. 195-211

[29] G.W. Fisher; P.A. Conrad; R.L. Debiasio; D.L. Taylor Centripetal transport of cytoplasm, actin, and the cell surface in lamellipodia of fibroblasts, Cell Motil. Cytoskelet., Volume 11 (1988), pp. 235-247

[30] R. Rid; N. Schiefermeier; I. Grigoriev; J.V. Small; I. Kaverina The last but not the least: the origin and significance of trailing adhesions in fibroblastic cells, Cell Motil. Cytoskelet., Volume 61 (2005), pp. 161-171

[31] L. Lu; Y. Feng; W.J. Hucker; S.J. Oswald; G.D. Longmore; F.C.P. Yin Actin stress fiber pre-extension in human aortic endothelial cells, Cell Motil. Cytoskelet., Volume 65 (2008), pp. 281-294

[32] B. Ji; G. Bao Cell and molecular biomechanics: perspectives and challenges, Acta Mech. Solida Sin., Volume 24 (2011), pp. 27-51

[33] Y. Zhong; D. Kong; L. Dai; B. Ji Frequency-dependent focal adhesion instability and cell reorientation under cyclic substrate stretching, Cell. Mol. Bioeng., Volume 4 (2011), pp. 442-456

[34] R. Paul; P. Heil; J.P. Spatz; U.S. Schwarz Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment, Biophys. J., Volume 94 (2008), pp. 1470-1482

[35] S. Deguchi; T. Ohashi; M. Sato Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells, J. Biomech., Volume 39 (2006), pp. 2603-2610

[36] M. They; A. Pein; E. Dressaire; Y. Chen; M. Bornens Cell distribution of stress fibres in response to the geometry of the adhesive environment, Cell Motil. Cytoskelet., Volume 63 (2006), pp. 341-355

[37] I.B. Bischofs; F. Klein; D. Lehnert; M. Bastmeyer; U.S. Schwarz Filamentous network mechanics and active contractility determine cell and tissue shape, Biophys. J., Volume 95 (2008) no. 7, pp. 3488-3496 | DOI

[38] K. Kendall The adhesion and surface energy of elastic solids, J. Phys. D, Appl. Phys., Volume 4 (1971), pp. 1186-1195

[39] X. Peng; J. Huang; C. Xiong; J. Fang Cell adhesion nucleation regulated by substrate stiffness: a Monte Carlo study, J. Biomech., Volume 45 (2012), pp. 116-122

[40] G.A. Dunn; D. Zicha Dynamics of fibroblast spreading, J. Cell Sci., Volume 108 (1995), pp. 1239-1249

[41] J.W. Dai; M.P. Sheetz; X.D. Wan; C.E. Morris Membrane tension in swelling and shrinking molluscan neurons, J. Neurosci., Volume 18 (1998), pp. 6681-6692

[42] W. Helfrich Elasticity and Thermal Undulations of Fluid Films of Amphiphiles, Elsevier, North-Holland, Amsterdam, The Netherlands, 1990

[43] J. Lee; K. Jacobson The composition and dynamics of cell-substratum adhesions in locomoting fish keratocytes, J. Cell Sci., Volume 110 (1997), pp. 2833-2844

[44] K.A. Beningo; M. Dembo; I. Kaverina; J.V. Small; Y.-l. Wang Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts, J. Cell Biol., Volume 153 (2001), pp. 881-888

[45] B. Ji; B. Huo Probing the mechanosensitivity in cell adhesion and migration: experiments and modeling, Acta Mech. Sin., Volume 29 (2013), pp. 469-484

[46] J.L. Tan; J. Tien; D.M. Pirone; D.S. Gray; K. Bhadriraju; C.S. Chen From the cover: cells lying on a bed of microneedles: an approach to isolate mechanical force, Proc. Natl. Acad. Sci., Volume 100 (2003), pp. 1484-1489

[47] A.D. Bershadsky; N.Q. Balaban; B. Geiger Adhesion-dependent cell mechanosensitivity, Annu. Rev. Cell Dev. Biol., Volume 19 (2003), pp. 677-695

[48] N.Q. Balaban; U.S. Schwarz; D. Riveline; P. Goichberg; G. Tzur; I. Sabanay; D. Mahalu; S.A. Safran; A. Bershadsky; L. Addadi; B. Geiger Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates, Nat. Cell Biol., Volume 3 (2001), pp. 466-472

[49] C.A. Lemmon; L.H. Romer A predictive model of cell traction forces based on cell geometry, Biophys. J., Volume 99 (2010), p. L78-L80

[50] Y. Zhong; B. Ji Impact of cell shape on cell migration behavior on elastic substrate, Biofabrication, Volume 5 (2013), p. 015011

[51] A.D. Rape; W.-h. Guo; Y.-l. Wang The regulation of traction force in relation to cell shape and focal adhesions, Biomaterials, Volume 32 (2011), pp. 2043-2051

[52] J. Stricker; Y. Aratyn-Schaus; P.W. Oakes; M.L. Gardel Spatiotemporal constraints on the force-dependent growth of focal adhesions, Biophys. J., Volume 100 (2011), pp. 2883-2893

[53] Y. Zhong; S. He; B. Ji Mechanics in mechanosensitivity of cell adhesion and its roles in cell migration, Int. J. Comput. Mater. Sci. Eng., Volume 1 (2012), p. 1250032

[54] D.R.B. Aroush; R. Zaidel-Bar; A.D. Bershadsky; H.D. Wagner Temporal evolution of cell focal adhesions: experimental observations and shear stress profiles, Soft Matter, Volume 4 (2008), pp. 2410-2417

[55] D. Kong; B.H. Ji; L.H. Dai Stabilizing to disruptive transition of focal adhesion response to mechanical forces, J. Biomech., Volume 43 (2010), pp. 2524-2529

[56] C.G. Galbraith; K.M. Yamada; M.P. Sheetz The relationship between force and focal complex development, J. Cell Biol., Volume 159 (2002), pp. 695-705

[57] J.M. Goffin; P. Pittet; G. Csucs; J.W. Lussi; J.J. Meister; B. Hinz Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers, J. Cell Biol., Volume 172 (2006), pp. 259-268

[58] C.-M. Lo; H.-B. Wang; M. Dembo; Y.-l. Wang Cell movement is guided by the rigidity of the substrate, Biophys. J., Volume 79 (2000), pp. 144-152

[59] D. Kong; B. Ji; L. Dai Stability of adhesion clusters and cell reorientation under lateral cyclic tension, Biophys. J., Volume 95 (2008), pp. 4034-4044

[60] D. Kong; B. Ji; L. Dai Nonlinear mechanical modeling of cell adhesion, J. Theor. Biol., Volume 250 (2008), pp. 75-84

[61] C. Jurado; J.R. Haserick; J. Lee Slipping or gripping? Fluorescent speckle microscopy in fish keratocytes reveals two different mechanisms for generating a retrograde flow of actin, Mol. Biol. Cell, Volume 16 (2005), pp. 507-518

[62] V.C. Abraham; V. Krishnamurthi; D.L. Taylor; F. Lanni The actin-based nanomachine at the leading edge of migrating cells, Biophys. J., Volume 77 (1999), pp. 1721-1732

[63] R.J. Pelham; Y.L. Wang Cell locomotion and focal adhesions are regulated by substrate flexibility, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), pp. 13661-13665

[64] J. Solon; I. Levental; K. Sengupta; P.C. Georges; P.A. Janmey Fibroblast adaptation and stiffness matching to soft elastic substrates, Biophys. J., Volume 93 (2007), pp. 4453-4461

Cited by Sources:

Comments - Policy