Comptes Rendus
Determinations of both length scale and surface elastic parameters for fcc metals
Comptes Rendus. Mécanique, Volume 342 (2014) no. 5, pp. 315-325.

In the present research, a systematical study of trans-scale mechanics theory is performed. The surface/interface energy density varying with material deformation is considered, and the general surface/interface elastic constitutive equations are derived. New methods to determine the material length scale parameter and the surface elastic parameters based on a simple quasi-continuum method, i.e. the Cauchy–Born rule, are developed and applied to typical fcc metals. In the present research, the material length parameters will be determined through an equivalent condition of the strain energy density calculated by adopting the strain gradient theory and by adopting the Cauchy–Born rule, respectively. Based on the surface constitutive equations obtained in the present research, the surface elastic parameters are calculated by using the Gibbs definition of surface energy density and the Cauchy–Born rule method.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.03.004
Keywords: Trans-scale mechanics, Cauchy–Born rule, Surface energy density, Length scale, Surface elastic parameter

Jingru Song 1; Jianyun Liu 1; Hansong Ma 1; Lihong Liang 1; Yuegaung Wei 1

1 State-Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
@article{CRMECA_2014__342_5_315_0,
     author = {Jingru Song and Jianyun Liu and Hansong Ma and Lihong Liang and Yuegaung Wei},
     title = {Determinations of both length scale and surface elastic parameters for fcc metals},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {315--325},
     publisher = {Elsevier},
     volume = {342},
     number = {5},
     year = {2014},
     doi = {10.1016/j.crme.2014.03.004},
     language = {en},
}
TY  - JOUR
AU  - Jingru Song
AU  - Jianyun Liu
AU  - Hansong Ma
AU  - Lihong Liang
AU  - Yuegaung Wei
TI  - Determinations of both length scale and surface elastic parameters for fcc metals
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 315
EP  - 325
VL  - 342
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2014.03.004
LA  - en
ID  - CRMECA_2014__342_5_315_0
ER  - 
%0 Journal Article
%A Jingru Song
%A Jianyun Liu
%A Hansong Ma
%A Lihong Liang
%A Yuegaung Wei
%T Determinations of both length scale and surface elastic parameters for fcc metals
%J Comptes Rendus. Mécanique
%D 2014
%P 315-325
%V 342
%N 5
%I Elsevier
%R 10.1016/j.crme.2014.03.004
%G en
%F CRMECA_2014__342_5_315_0
Jingru Song; Jianyun Liu; Hansong Ma; Lihong Liang; Yuegaung Wei. Determinations of both length scale and surface elastic parameters for fcc metals. Comptes Rendus. Mécanique, Volume 342 (2014) no. 5, pp. 315-325. doi : 10.1016/j.crme.2014.03.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.03.004/

[1] N.A. Fleck; J.W. Hutchinson Strain gradient plasticity (J.W. Hutchinson; T.Y. Wu, eds.), Adv. Appl. Mech., vol. 33, Academic Press, New York, 1997, pp. 295-361

[2] Y.G. Wei A new finite element method for strain gradient theories and applications to fracture analyses, Eur. J. Mech. A, Solids, Volume 25 (2006), pp. 897-913

[3] Y.G. Wei; J.W. Hutchinson Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity, J. Mech. Phys. Solids, Volume 45 (1997), pp. 1253-1273

[4] Y.G. Wei Particulate size effects in the particle-reinforced metal-matrix composites, Acta Mech. Sin., Volume 17 (2001), pp. 45-58

[5] S. Forest; N.M. Cordero; E.P. Busso First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales, Comput. Mater. Sci., Volume 50 (2011), pp. 1299-1304

[6] K.A. Lazopoulos; A.K. Lazopoulos On the torsion problem of strain gradient elastic bars, Mech. Res. Commun., Volume 45 (2012), pp. 42-47

[7] J.S. Stolken; A.G. Evans A microbend test method for measuring the plasticity length scale, Acta Mater., Volume 46 (1998), pp. 5109-5115

[8] M.R. Begley; J.W. Hutchinson The mechanics of size-dependent indentation, J. Mech. Phys. Solids, Volume 46 (1998), pp. 2049-2068

[9] Hansong Ma; Gengkai Hu Eshelby tensors for an ellipsoidal inclusion in a micropolar material, Int. J. Eng. Sci., Volume 44 (2006), pp. 595-605

[10] X.L. Chen; H.S. Ma; L.H. Liang; Y.G. Wei A surface energy model and application to mechanical behavior analysis of single crystals at sub-micron scale, Comput. Mater. Sci., Volume 46 (2009), pp. 723-727

[11] H.L. Duan; J. Wang; B.L. Karihaloo; Z.P. Huang Nanoporous materials can be made stiffer than non-porous counterparts by surface modification, Acta Mater., Volume 54 (2006), pp. 2983-2990

[12] W. Gao; S.W. Yu; G.Y. Huang Finite element characterization of the size-dependent mechanical behavior in nanosystems, Nanotechnology, Volume 17 (2006), pp. 1118-1122

[13] Gang-Feng Wang; Xi-Qiao Feng; Tie-Jun Wang et al. Surface effects on the near-tip stresses for mode-I and mode-III cracks, J. Appl. Mech., Volume 75 (2008), p. 011001

[14] M.E. Gurtin; A. Ian Murdoch A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal., Volume 57 (1975) no. 4, pp. 291-323

[15] D.J. Steigmann; R.W. Ogden Elastic surface–substrate interactions, Proc. R. Soc. A, Volume 455 (1999) no. 1982, pp. 437-474

[16] R. Dingreville; J. Qu Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films, J. Mech. Phys. Solids, Volume 53 (2005) no. 8, pp. 1827-1854

[17] A. Javili; P. Steinmann On thermomechanical solids with boundary structures, Int. J. Solids Struct., Volume 47 (2010) no. 24, pp. 3245-3253

[18] B. Bar On; E. Altus; E.B. Tadmor Surface effects in non-uniform nanobeams: continuum vs. atomistic modeling, Int. J. Solids Struct., Volume 47 (2010) no. 9, pp. 1243-1252

[19] J. Yvonnet; A. Mitrushchenkov; G. Chambaud; Q.C. He Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations, Comput. Methods Appl. Mech. Eng., Volume 200 (2011) no. 5–8, pp. 614-625

[20] D. Davydov; A. Javili; P. Steinmann On molecular statics and surface-enhanced continuum modeling of nano-structures, Comput. Mater. Sci., Volume 69 (2013) no. 0, pp. 510-519

[21] B. Wu; L.H. Liang; H.S. Ma; Y.G. Wei A trans-scale model for size effects and intergranular fracture in nanocrystalline and ultra-fine polycrystalline metals, Comput. Mater. Sci., Volume 57 (2012), pp. 2-7

[22] J.W. Gibbs The Collected Works of J. Willard Gibbs, vol. I, Thermodynamics, Longmans, Green, and Company, New York, 1928

[23] Baoqin Fu Analysis and Calculation of Surface Energy with the Empirical Electron Theory in Solid and Molecule[D], Beijing University of Chemical Technology, China, 2010

[24] R. Shuttleworth The surface tension of solids, Proc. Phys. Soc. A, Volume 63 (1950), pp. 444-457

[25] H.S. Park Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered, Nanotechnology, Volume 20 (2009), p. 206102

[26] R.D. Meade; D. Vanderbilt Origins of stress on elemental and chemisorbed semiconductor surfaces, Phys. Rev. Lett., Volume 63 (1989), p. 1404

[27] R.J. Needs Calculations of the surface stress tensor at aluminum (111) and (110) surface, Phys. Rev. Lett., Volume 58 (1987), pp. 53-56

[28] Vijay B. Shenoy Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Phys. Rev. B, Volume 71 (2005), p. 094104

[29] Changwen Mi; Sukky Jun; D.A. Kouris Atomistic calculations of interface elastic properties in noncoherent metallic bilayers, Phys. Rev. B, Volume 77 (2008), p. 075425

[30] Ladan Pahlevani; Hossein M. Shodja Surface and interface effects on torsion of eccentrically two-phase fcc circular nanorods: determination of the surface/interface elastic properties via an atomistic approach, J. Appl. Mech., Volume 78 (2011), p. 011011

[31] X.L. Gao; S.K. Park; H.M. Ma Analytical solution for a pressurized thick-walled spherical shell based on a simplified strain gradient elasticity theory, Math. Mech. Solids, Volume 14 (2009) no. 8, pp. 747-758

[32] M. Born; K. Huang Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford, UK, 1954

[33] R. Sunyk; P. Steinmann On higher gradients in continuum-atomistic modeling, Int. J. Solids Struct., Volume 40 (2003) no. 24, pp. 6877-6896

[34] R.A. Johnson Alloy models with the embedded-atom method, Phys. Rev. B, Volume 37 (1989), p. 12554

[35] H. Rafii-Tabar; A.P. Sulton Long-range Finnis–Sinclair potentials for fcc metallic alloys, Philos. Mag. Lett., Volume 63 (1991), pp. 217-224

[36] P. Steinmann; A. Elizondo; R. Sunyk Studies of validity of the Cauchy–Born rule by direct comparison of continuum and atomistic modeling, Model. Simul. Mater. Sci. Eng., Volume 15 (2007), p. S271-S281

Cited by Sources:

Comments - Policy