Comptes Rendus
A modeling and vibration analysis of a piezoelectric micro-pump diaphragm
Comptes Rendus. Mécanique, Volume 342 (2014) no. 12, pp. 692-699.

The vibration analysis of a micro-pump diaphragm is presented. A piezoelectric micro-pump is studied. For this purpose, a dynamic model of the micro-pump is derived. The micro-pump diaphragm is modeled as circular double membranes, a piezoelectric one as actuator and a silicon one for representing the membrane for pumping action. The damping effect of the fluid is introduced into the equations. Vibration analysis is established by explicitly solving the dynamic model. The natural frequencies and mode shapes are calculated. The orthogonality conditions of the system are discussed. To verify the results, the finite-element micro-pump model is developed in ANSYS software package. The results show that the two methods are well comparable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2014.06.005
Mots clés : Piezoelectric micro-pump, Diaphragm, Vibration analysis, Micro-electromechanical system, Finite element analysis, Orthogonality
Samira Kaviani 1 ; Mohsen Bahrami 1 ; Amir Monemian Esfahani 1 ; Behzad Parsi 1

1 Dept. of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
@article{CRMECA_2014__342_12_692_0,
     author = {Samira Kaviani and Mohsen Bahrami and Amir Monemian Esfahani and Behzad Parsi},
     title = {A modeling and vibration analysis of a piezoelectric micro-pump diaphragm},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {692--699},
     publisher = {Elsevier},
     volume = {342},
     number = {12},
     year = {2014},
     doi = {10.1016/j.crme.2014.06.005},
     language = {en},
}
TY  - JOUR
AU  - Samira Kaviani
AU  - Mohsen Bahrami
AU  - Amir Monemian Esfahani
AU  - Behzad Parsi
TI  - A modeling and vibration analysis of a piezoelectric micro-pump diaphragm
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 692
EP  - 699
VL  - 342
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2014.06.005
LA  - en
ID  - CRMECA_2014__342_12_692_0
ER  - 
%0 Journal Article
%A Samira Kaviani
%A Mohsen Bahrami
%A Amir Monemian Esfahani
%A Behzad Parsi
%T A modeling and vibration analysis of a piezoelectric micro-pump diaphragm
%J Comptes Rendus. Mécanique
%D 2014
%P 692-699
%V 342
%N 12
%I Elsevier
%R 10.1016/j.crme.2014.06.005
%G en
%F CRMECA_2014__342_12_692_0
Samira Kaviani; Mohsen Bahrami; Amir Monemian Esfahani; Behzad Parsi. A modeling and vibration analysis of a piezoelectric micro-pump diaphragm. Comptes Rendus. Mécanique, Volume 342 (2014) no. 12, pp. 692-699. doi : 10.1016/j.crme.2014.06.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.06.005/

[1] Nan-Chyuan Tsai; Chung-Yang Sue Review of MEMS-based drug delivery and dosing systems, Sens. Actuators A, Volume 134 (2007), pp. 555-564

[2] S.F. Bart et al. Microfabricated electrohydrodynamic pumps, Sens. Actuators A, Volume 21 (1990) no. 1–3, pp. 193-197

[3] J.G. Smits Piezoelectric micropump with three valves working peristaltically, Sens. Actuators A, Volume 21 (1990) no. 1–3, pp. 203-206

[4] F. Forster; R. Bardell; M. Afromowitz; N. Sharma Design, fabrication and testing of fixed-valve micropumps, 1995 IMECE, Volume vol. 234 (1995), pp. 39-44

[5] T. Gerlach; H. Wurmus Working principle and performance of the dynamic micropump, Sens. Actuators A, Phys., Volume 50 (1995) no. 1–2, pp. 135-140

[6] A. Olsson; P. Enoksson; G. Stemme; E. Stemme A valve-less planar pump in silicon, Stockholm, 25–29 June (1995), pp. 291-294

[7] P.K. Das; S. Bhattacharjee; W. Moussa Electrostatic force modulation as a flow control mechanism in microfluidic devices, Banff, Canada (2002)

[8] J. Johari et al. Piezoelectric micropump with nanoliter per minute flow for drug delivery systems, Sains Malays., Volume 40 (2011) no. 3, pp. 275-281

[9] U.F. González Simulation of Mems Piezoelectric Micropump for Biomedical Applications, ALGOR, Inc., 2003

[10] C. Ayela; L. Nicu Micromachined piezoelectric membranes with high nominal quality factors in Newtonian liquid media: a Lamb's model validation at the microscale, Sens. Actuators B, Chem., Volume 123 (2013) no. 2, pp. 860-868

[11] J. Cho; M. Anderson; R. Richards; D. Bahr; C. Richards Optimization of electromechanical coupling for a thin-film PZT membrane: I. Modeling, J. Micromech. Microeng., Volume 15 (2005), pp. 1797-1803

[12] Tachung C. Yih; T. Chiming Wei; B. Hammad Modeling and characterization of a nanoliter drug-delivery MEMS micropump with circular bossed membrane, Nanomed. Nanotechol. Biol. Med., Volume 1 (2005), pp. 164-175

[13] L.S. Pan; T.Y. Ng; G.R. Liu; K.Y. Lam; T.Y. Jiang Analytical solution for the dynamic analysis of a valveless micro-pump—a fluid-membrane coupling study, Sens. Actuators A, Volume 93 (2001), pp. 173-181

[14] Z. Oniszczuk Transverse vibrations of elastically connected rectangular double-membrane compound system, J. Sound Vib., Volume 221 (1999) no. 2, pp. 235-250

[15] S. Noga Free transverse vibration analysis of an elastically connected annular and circular double-membrane compound system, J. Sound Vib., Volume 329 (2010), pp. 1507-1522

[16] ANSYS Tutorial, Example 4.4.

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A hybrid piezoelectric–electromagnetic nonlinear vibration energy harvester excited by fluid flow

Muhammad Hafizh; Asan G. A. Muthalif; Jamil Renno; ...

C. R. Méca (2021)