Comptes Rendus
Transient response of thermoelastic bodies linked by a thin layer of low stiffness and high thermal resistivity
Comptes Rendus. Mécanique, Volume 343 (2015) no. 1, pp. 18-26.

We extend to the thermoelastic case the study [1] devoted to the dynamic response of a structure made of two linearly elastic bodies linked by a thin soft adhesive linearly elastic layer. Once again, a formulation in terms of an evolution equation in a Hilbert space of possible states with finite energy makes it possible to identify the asymptotic behavior, when some geometrical and thermomechanical parameters tend to their natural limits, as the response of two bodies linked by a thermomechanical constraint. The genuine thermomechanical coupling remains in the constraint law only for a specific relative behavior of the parameters.

On étend au cas thermoélastique l'étude [1] consacrée à la réponse dynamique d'un assemblage de deux corps linéairement élastiques liés par une couche adhésive linéairement élastique mince et molle. À nouveau, une formulation en terme d'équations d'évolution dans un espace de Hilbert d'états possibles d'énergie finie permet d'identifier le comportement asymptotique, lorsque des paramètres géométriques et thermomécaniques tendent vers leurs limites naturelles, comme la réponse de l'assemblage des deux corps par une liaison thermomécanique. Le couplage thermomécanique initial perdure dans la loi de la liaison uniquement pour un comportement relatif particulier des paramètres.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.09.005
Keywords: Bonding problem, Linearized thermoelasticity, Dynamics, Evolution equations, m-Dissipative operators
Mot clés : Problèmes de collage, Thermoélasticité linéarisée, Dynamique, Équations d'évolution, Opérateurs m-dissipatifs

Christian Licht 1, 2, 3; Ahmed Ould Khaoua 4; Thibaut Weller 1

1 LMGC, UMR–CNRS 5508, Université Montpellier-2, case courier 048, place Eugène-Bataillon, 34095 Montpellier cedex 5, France
2 Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
3 Centre of Excellence in Mathematics, CHE, Bangkok 10400, Thailand
4 Departamento de Matemáticas, Universidad de los Andes, Cra 1 No 18A-12, Bogota, Colombia
@article{CRMECA_2015__343_1_18_0,
     author = {Christian Licht and Ahmed Ould Khaoua and Thibaut Weller},
     title = {Transient response of thermoelastic bodies linked by a thin layer of low stiffness and high thermal resistivity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {18--26},
     publisher = {Elsevier},
     volume = {343},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crme.2014.09.005},
     language = {en},
}
TY  - JOUR
AU  - Christian Licht
AU  - Ahmed Ould Khaoua
AU  - Thibaut Weller
TI  - Transient response of thermoelastic bodies linked by a thin layer of low stiffness and high thermal resistivity
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 18
EP  - 26
VL  - 343
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2014.09.005
LA  - en
ID  - CRMECA_2015__343_1_18_0
ER  - 
%0 Journal Article
%A Christian Licht
%A Ahmed Ould Khaoua
%A Thibaut Weller
%T Transient response of thermoelastic bodies linked by a thin layer of low stiffness and high thermal resistivity
%J Comptes Rendus. Mécanique
%D 2015
%P 18-26
%V 343
%N 1
%I Elsevier
%R 10.1016/j.crme.2014.09.005
%G en
%F CRMECA_2015__343_1_18_0
Christian Licht; Ahmed Ould Khaoua; Thibaut Weller. Transient response of thermoelastic bodies linked by a thin layer of low stiffness and high thermal resistivity. Comptes Rendus. Mécanique, Volume 343 (2015) no. 1, pp. 18-26. doi : 10.1016/j.crme.2014.09.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.09.005/

[1] C. Licht; A. Léger; F. Lebon Dynamics of elastic bodies connected by a thin adhesive layer (A. Léger; M. Deschamps, eds.), Ultrasonic Wave Propagation in Non Homogeneous Media, Springer Proc. Phys., vol. 128, Springer, Heidelberg, Germany, 2009

[2] C. Licht; A. Léger; S. Orankitjaroen; A. Ould Khaoua Dynamics of elastic bodies connected by a thin soft viscoelastic layer, J. Math. Pures Appl., Volume 99 (2013) no. 6, pp. 685-703

[3] H. Brézis Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011

[4] H.F. Trotter Approximation of semi-groups of operators, Pacific J. Math., Volume 28 (1958), pp. 897-919

[5] C. Licht; S. Orankitjaroen Dynamics of elastic bodies connected by a thin soft inelastic layer, C. R. Mecanique, Volume 341 (2013), pp. 323-332

Cited by Sources:

Comments - Policy