Comptes Rendus
Influence of the morphology of slope and blocks on the energy dissipations in a rock avalanche
Comptes Rendus. Mécanique, Volume 343 (2015) no. 2, pp. 166-177.

A discrete element model was used to determine the influence of block shape and surface topography on energy dissipative modes occurring during rockfalls or avalanches. By using realistic shapes of particles and a specific contact law able to represent the main dissipation phenomena at the contact-rebound point, we analyze the contribution of tangential and collisional effects within the granular material or at the base of the flow. It was shown that the particle shape and the slope geometry have a major influence on the energy dissipative modes and need to be accounted for in numerical models.

Les modes de dissipations énergétiques lors de la propagation d'avalanches de roches sont étudiés à l'aide d'un modéle numérique aux éléments discrets. En utilisant des formes de blocs réalistes et une loi de contact spécifique permettant de prendre en considération les principaux phénomènes dissipatifs qui surviennent lors d'un impact, il nous a été possible d'analyser les différents modes de dissipation, par frottement et par chocs, qui se développent au sein du matériau granulaire ou à la base de l'écoulement. Il est montré que la forme des particules et la géométrie de la pente ont une influence majeure sur les modes de dissipation d'énergie et doivent être pris en compte dans les modèles numériques pour une meilleure prédiction de la propagation des avalanches rocheuses.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.11.003
Keywords: Rock avalanches, Discrete elements, Mechanical dissipation, Sensitivity study, Granular flows
Mot clés : Avalanches rocheuses, Éléments discrets, Dissipation mécanique, Étude de sensibilité, Écoulement granulaire

Dominique Daudon 1; Pascal Villard 1; Vincent Richefeu 1; Guilhem Mollon 1

1 Université Grenoble-Alpes, 3SR Lab, 175, rue de la Passerelle, 38400 Saint-Martin-d'Hères, France
@article{CRMECA_2015__343_2_166_0,
     author = {Dominique Daudon and Pascal Villard and Vincent Richefeu and Guilhem Mollon},
     title = {Influence of the morphology of slope and blocks on the energy dissipations in a rock avalanche},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {166--177},
     publisher = {Elsevier},
     volume = {343},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crme.2014.11.003},
     language = {en},
}
TY  - JOUR
AU  - Dominique Daudon
AU  - Pascal Villard
AU  - Vincent Richefeu
AU  - Guilhem Mollon
TI  - Influence of the morphology of slope and blocks on the energy dissipations in a rock avalanche
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 166
EP  - 177
VL  - 343
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2014.11.003
LA  - en
ID  - CRMECA_2015__343_2_166_0
ER  - 
%0 Journal Article
%A Dominique Daudon
%A Pascal Villard
%A Vincent Richefeu
%A Guilhem Mollon
%T Influence of the morphology of slope and blocks on the energy dissipations in a rock avalanche
%J Comptes Rendus. Mécanique
%D 2015
%P 166-177
%V 343
%N 2
%I Elsevier
%R 10.1016/j.crme.2014.11.003
%G en
%F CRMECA_2015__343_2_166_0
Dominique Daudon; Pascal Villard; Vincent Richefeu; Guilhem Mollon. Influence of the morphology of slope and blocks on the energy dissipations in a rock avalanche. Comptes Rendus. Mécanique, Volume 343 (2015) no. 2, pp. 166-177. doi : 10.1016/j.crme.2014.11.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.11.003/

[1] P. Habib Note sur le rebondissement des blocs rocheux, 20–21 May (1976), pp. 123-125

[2] F. Descoeudres Aspects géomécaniques des instabilités de falaises rocheuses et des chutes de blocs, Montreux, Switzerland, 7 November (1997)

[3] S. Evans; O. Hungr The assessment of rockfall hazard at the base of talus slopes, Can. Geotech. J., Volume 30 (1993), pp. 620-636

[4] L.K.A. Dorren; F. Berger; U.S. Putters Real size experiments and 3D simulation of rockfall on forested and non-forested slopes, Nat. Hazards Earth Syst. Sci., Volume 6 (2006), pp. 145-153

[5] F. Bourrier; L.K.A. Dorren; F. Nicot; F. Berger; F. Darve Towards objective rockfall trajectory simulation using a stochastic impact model, Geomorphology, Volume 110 (2009), pp. 68-79

[6] S. Wu Rockfall evaluation by computer simulation, Transp. Res. Rec., Volume 1031 (1985), pp. 1-5

[7] Y. Okura; H. Kitahara; T. Sammori Fluidization in dry landslides, Eng. Geol., Volume 56 (2000), pp. 347-360

[8] D. Bozzolo; R. Pamini Simulation of rock falls down a valley side, Acta Mech., Volume 63 (1986), pp. 1-4

[9] A. Azzoni; M. De Freitas Experimentally gained parameters, decisive for rockfall analysis, Rock Mech. Rock Eng., Volume 28 (1995) no. 2, pp. 111-124

[10] K. Chau; R. Wong; J. Liu; J. Wu; C. Lee Shape effects on the coefficient of restitution during rockfall impacts, Proc. of the 9th International Congress on Rock Mechanics, vol. 1, International Society for Rock Mechanics (ISRM), Paris, 1999, pp. 541-544

[11] M. Fornaro; D. Peila; M. Nebbia Block falls on rock slopes: application of a numerical simulation program to some real cases, Rotterdam, The Netherlands (1990), pp. 2173-2180

[12] G. Giani; A. Giacomini; M. Migliazza; A. Segalini Experimental and theoretical studies to improve rock fall analysis and protection work design, Rock Mech. Rock Eng., Volume 37 (2004) no. 5, pp. 369-389

[13] B. Heidenreich Small and half-scale experimental studies of rockfall impacts on sandy slopes, EPFL, Lausanne, Switzerland, 2004 (Ph.D. thesis)

[14] C. Wu; C. Thornton; L. Li Coefficients of restitution for elastoplastic oblique impacts, Adv. Powder Technol., Volume 14 (2003), pp. 937-960

[15] F. Ferrari; G.P. Giani; T. Apuani Why can rockfall normal restitution coefficient be higher than one?, Rend. Online Soc. Geol. It., Volume 24 (2013), pp. 122-124

[16] O. Hungr A model for the runout analysis of rapid flow slides, debris flows, and avalanches, Can. Geotech. J., Volume 32 (1995) no. 4, pp. 610-623 | DOI

[17] A. Voellmy Über die zerstorungskraft von Lawinen, Schweiz. Bauztg., Volume 73 (1955), pp. 212-285

[18] A. Mangeney-Castelnau; J.-P. Vilotte; M.O. Bristeau; B. Perthame; F. Bouchut; C. Simeoni; S. Yerneni Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme, J. Geophys. Res., Volume 108 (2003) no. B11, p. 2527 | DOI

[19] M. Pirulli; A. Mangeney Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology, Rock Mech. Rock Eng., Volume 41 (2008) no. 1, pp. 59-84 | DOI

[20] K. Hutter; T. Koch; C. Pluss; S.B. Savage The dynamics of avalanches of granular-materials from initiation to runout. 2. Experiments, Acta Mech., Volume 109 (1995), pp. 127-165 | DOI

[21] C. Sautier; V. Labiouse; M. Pirulli; C. Scavia; J. Zhao Numerical simulation of gravel unconstrained flow experiments: a comparison between dan-3D and rash-3D codes, 15–18 June (2010), pp. 571-574

[22] M. Pirulli The Thurwieser rock avalanche (Italian Alps): description and dynamic analysis, Eng. Geol., Volume 109 (2009) no. 1, 2, pp. 80-92

[23] C. Campbell; P. Cleary; M. Hopkins Large-scale landslide simulations of global deformation, velocities and basal friction, J. Geophys. Res., Solid Earth, Volume 100 (1995), pp. 8267-8283

[24] F. Calvetti; G.B. Crosta; M. Tatarella Numerical simulation of dry granular flows: from the reproduction of small-scale experiments to the prediction of rock avalanches, Riv. Ital. Geotec., Volume 2 (2000), pp. 1-38

[25] P.W. Cleary; M. Prakash Discrete-element modeling and smoothed particle hydrodynamics: potential in the environmental sciences, Philos. Trans. R. Soc., Math. Phys. Eng. Sci., Volume 362 (2004), pp. 2003-2030 | DOI

[26] L. Staron Mobility of long-runout rock flows: a discrete numerical investigation, Geophys. J. Int., Volume 172 (2008), pp. 455-463 | DOI

[27] R. Valentino; G. Barla; L. Montrasio Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests, Rock Mech. Rock Eng., Volume 41 (2008), pp. 153-177 | DOI

[28] A. Taboada; N. Estrada Rock-and-soil avalanches: theory and simulation, J. Geophys. Res., Volume 114 (2009) | DOI

[29] J. Banton; P. Villard; D. Jongmans; C. Scavia Two-dimensional discrete element models of debris avalanches: parameterization and the reproducibility of experimental results, J. Geophys. Res., Volume 114 (2009), p. F04013 | DOI

[30] K.J. Chang; A. Taboada Discrete element simulation of the Jiufengershan rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake, Taiwan, J. Geophys. Res., Volume 114 (2009), p. F03003 | DOI

[31] P.A. Cundall; O.D.L. Strack A discrete numerical-model for granular assemblies, Geotechnique, Volume 29 (1979), pp. 47-65

[32] O.R. Walton; R.L. Braun Viscosity, granular temperature, and stress calculations for shearing assemblies of inelastic, frictional disks, J. Rheol., Volume 30 (1986), pp. 949-980

[33] L. Favier; D. Daudon; F. Donze; J. Mazars Predicting the drag coefficient of a granular flow using the discrete element method, J. Stat. Mech. Theory Exp. (2009), pp. 1-15 http://stacks.iop.org/JSTAT/2009/P06012

[34] F. Alonso-Marroquin Spheropolygons: a new method to simulate conservative and dissipative interactions between 2d complex-shaped rigid bodies, Europhys. Lett., Volume 83 (2008) no. 1 | DOI

[35] V. Richefeu; G. Mollon; D. Daudon; P. Villard Dissipative contacts and realistic block shapes for modelling rock avalanches, Eng. Geol., Volume 149–150 (2012), pp. 78-92 | DOI

[36] G. Mollon; V. Richefeu; P. Villard; D. Daudon Numerical simulation of rock avalanches: influence of local dissipative contact model on the collective behavior of granular flows, J. Geophys. Res., Volume 117 (2012), p. F02036 | DOI

[37] G. Van Den Bergen (The Morgan Kaufmann Series in Interactive 3D Technology), Morgan Kaufmann Publishers (2004), p. 280

[38] I. Manzella; V. Labiouse Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches, Eng. Geol., Volume 109 (2009), pp. 146-158

[39] D.D. Durda; N. Movshovitz; D.C. Richardson; E. Asphaug; A. Morgan; A.R. Rawlings; C. Vest Experimental determination of the coefficient of restitution for meter-scale granite spheres, Icarus, Volume 211 (2010), pp. 849-855 | DOI

[40] R. Ramírez; T. Pöschel; N.V. Brilliantov; T. Schwager Coefficient of restitution of colliding viscoelastic spheres, Phys. Rev. E, Volume 60 (1999) no. 4, p. 4465

[41] R. Sondergaard; K. Chaney; C.E. Brennen Measurements of solid spheres bouncing off flat plates, J. Appl. Mech., Volume 112 (1990) no. 3, pp. 694-699 (ISSN: 0305-0548)

[42] L. Labous; A.D. Rosato; R.N. Dave Measurement of collisional properties of spheres using high-speed video analysis, Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, Volume 56 (2000), pp. 5717-5725

[43] G. Kuwabara; K. Kono Restitution coefficient in a collision between two spheres, J. Appl. Phys., Volume 26 (1987), pp. 1230-1233

[44] C.K.K. Lun; S.B. Savage The effects of an impact velocity dependent coefficient of restitution on stresses developed by sheared granular materials, Acta Mech., Volume 63 (1986), pp. 15-44

Cited by Sources:

Comments - Policy