Measurements of relative permeabilities involve complex and long experiments, especially when dealing with supercritical carbon dioxide at high pressures and temperatures. However, the development of CCS (Carbon Capture and Storage) underlined the need of such experiments in order to carry-out the indispensable simulations of the behavior of deep saline aquifers or other geological formations subjected to carbon dioxide injection. In this article, we present the measurement of relative permeabilities of a sandstone with a new experimental set-up with the fluid pairs gaseous CO2/water and supercritical CO2/water. For highly permeable and non-reactive materials, the results are almost identical, showing little influence of the pressure, temperature, and physical state of the considered fluids on the obtained data.
Mesurer des perméabilités relatives implique des expériences lourdes et complexes, en particulier lorsqu'il s'agit de dioxyde de carbone supercritique à hautes pressions et températures. Cependant, le développement du CCS (capture et stockage du CO2) a souligné l'importance de telles expériences afin de mener à bien les simulations indispensables du comportement des aquifères salins profonds ou autres formations géologiques soumises à injection de dioxyde de carbone. Dans cet article, nous présentons la mesure de perméabilités relatives d'un grès à l'aide d'un nouveau prototype expérimental, avec les couples de fluides CO2/eau et CO2 supercritique/eau. Pour des matériaux à haute perméabilité, les résultats sont pratiquement identiques, soulignant le peu d'influence de la pression, de la température et de l'état physique des fluides utilisés sur les données obtenues.
Accepted:
Published online:
Mots-clés : CO2 supercritique, Permabilité relative, Grès, Régime permanent, CCS, Loi de Darcy
Florian Osselin 1; Antonin Fabbri 2; Teddy Fen-Chong 3; Jean-Michel Pereira 1; Arnault Lassin 4; Patrick Dangla 1
@article{CRMECA_2015__343_9_495_0, author = {Florian Osselin and Antonin Fabbri and Teddy Fen-Chong and Jean-Michel Pereira and Arnault Lassin and Patrick Dangla}, title = {Experimental investigation of the influence of supercritical state on the relative permeability of {Vosges} sandstone}, journal = {Comptes Rendus. M\'ecanique}, pages = {495--502}, publisher = {Elsevier}, volume = {343}, number = {9}, year = {2015}, doi = {10.1016/j.crme.2015.06.009}, language = {en}, }
TY - JOUR AU - Florian Osselin AU - Antonin Fabbri AU - Teddy Fen-Chong AU - Jean-Michel Pereira AU - Arnault Lassin AU - Patrick Dangla TI - Experimental investigation of the influence of supercritical state on the relative permeability of Vosges sandstone JO - Comptes Rendus. Mécanique PY - 2015 SP - 495 EP - 502 VL - 343 IS - 9 PB - Elsevier DO - 10.1016/j.crme.2015.06.009 LA - en ID - CRMECA_2015__343_9_495_0 ER -
%0 Journal Article %A Florian Osselin %A Antonin Fabbri %A Teddy Fen-Chong %A Jean-Michel Pereira %A Arnault Lassin %A Patrick Dangla %T Experimental investigation of the influence of supercritical state on the relative permeability of Vosges sandstone %J Comptes Rendus. Mécanique %D 2015 %P 495-502 %V 343 %N 9 %I Elsevier %R 10.1016/j.crme.2015.06.009 %G en %F CRMECA_2015__343_9_495_0
Florian Osselin; Antonin Fabbri; Teddy Fen-Chong; Jean-Michel Pereira; Arnault Lassin; Patrick Dangla. Experimental investigation of the influence of supercritical state on the relative permeability of Vosges sandstone. Comptes Rendus. Mécanique, Volume 343 (2015) no. 9, pp. 495-502. doi : 10.1016/j.crme.2015.06.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.06.009/
[1] Numerical simulations of the thermal impact of supercritical injection on chemical reactivity in a carbonate saline reservoir, Transp. Porous Media, Volume 82 (2010), pp. 247-274
[2] Formation dry-out from CO2 injection into saline aquifers. Part 1, Effects of solids precipitation and their mitigation, Water Resour. Res., Volume 45 (2009) | DOI
[3] Wettability literature survey: part 5. The effect of wettability on relative permeability, J. Pet. Technol., Volume 39 (1987) no. 11, pp. 1453-1468
[4] et al. Dependence on injection temperature and on aquifer's petrophysical properties of the local stress applying on the pore wall of a crystallized pore in the context of CO2 storage in deep saline aquifers, Eur. Phys. J. Appl. Phys., Volume 64 (2013)
[5] et al. Stress from NaCl crystallization by CO2 injection in aquifers, Environ. Geotech. (2014) | DOI
[6] Reactive transport modelling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms, and sequestration partitioning, Geol. Soc. (Lond.) Spec. Publ., Volume 233 (2004), pp. 107-128
[7] Effects of in-situ conditions on relative permeability characteristics of CO2–brine systems, Environ. Geol., Volume 54 (2008), pp. 1707-1722
[8] et al. Relative permeability analyses to describe multi-phase flow in CO2 storage reservoirs, CCS Institute, 2013 (Tech. rep. global)
[9] Simultaneous determination of capillary pressure and relative permeability curve from core-flooding experiments with various fluid pairs, Water Resour. Res., Volume 49 (2013), pp. 3516-3530 | DOI
[10] Dynamics of Fluids on Porous Media, Dover Publications Inc., 1988
[11] Gas and stones permeability and pore structure of sandstones, Int. J. Rock Mech. Min. Sci., Volume 36 (1999) no. 5, pp. 613-625
[12] Experimental study of two-phase flow in three sandstones. I. Measuring relative permeabilities during two-phase steady-state experiments, Int. J. Multiph. Flow, Volume 28 (2002), pp. 1719-1736
[13] A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 8000 MPa, J. Phys. Chem., Volume 25 (1996) no. 6, pp. 1509-1596
[14] et al. Wettability determination of core samples through visual rock and fluid imaging during fluid injection, J. Pet. Sci. Eng., Volume 78 (2011), pp. 476-485
[15] CO2–H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 C and up to 600 bar, Geochim. Cosmochim. Acta, Volume 67 (2003) no. 16, pp. 3015-3031
[16] CO2–H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12–100 °C and up to 600 bar, Geochim. Cosmochim. Acta, Volume 69 (2005) no. 13, pp. 3309-3320
[17] Proposition de méthodologie de caractérisation géologique et pétrophysique d'échantillons de roches réservoir, BRGM, 2012 (Rapport final. Tech. rep. RP-61092-FR)
[18] et al. Impact of porous medium dessication during anhydrous CO2 injection in deep saline aquifer: up scaling from experimental results at laboratory scale to near-well region, Energy Proc., Volume 4 (2011), pp. 4442-4449
[19] A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Amer. J., Volume 44 (1980) no. 5, pp. 892-898
[20] The interrelation between gas and oil relative permeabilities, Prod. Mon., Volume 19 (1954) no. 1, pp. 38-41
[21] et al. Laboratory determination of relative permeability, J. Pet. Technol., Volume 4 (1952) no. 8, pp. 187-196 | DOI
[22] Numerical models and experiments in immiscible displacements in porous media, J. Fluid Mech., Volume 189 (1988), pp. 165-187
[23] Mechanics and Physics of Porous Solids, John Wiley & Sons, Ltd., 2010
[24] Interfacial tensions in high pressure carbon dioxide mixtures, Ind. Eng. Chem. Res., Volume 34 (1995), pp. 4371-4377
Cited by Sources:
Comments - Policy