[Une perspective objective pour des critères classiques de classification d'écoulements]
Quatre critères classiques utilisés pour la classification des écoulements complexes sont étudiés ici. Ces critères sont utiles pour identifier les régions de l'écoulement liées au cisaillement, à l'extention ou au mouvement de corps rigides. Ces critères habituels, à savoir Q, Δ,
Four classic criteria used to the classification of complex flows are discussed here. These criteria are useful to identify regions of the flow related to shear, elongation or rigid-body motion. These usual criteria, namely Q, Δ,
Accepté le :
Publié le :
Mots-clés : Objectivité, Classification d'écoulements, Écoulement ABC, Contraction, Identification de tourbillons
Ramon S. Martins 1 ; Anselmo Soeiro Pereira 1 ; Gilmar Mompean 1 ; Laurent Thais 1 ; Roney Leon Thompson 2
@article{CRMECA_2016__344_1_52_0, author = {Ramon S. Martins and Anselmo Soeiro Pereira and Gilmar Mompean and Laurent Thais and Roney Leon Thompson}, title = {An objective perspective for classic flow classification criteria}, journal = {Comptes Rendus. M\'ecanique}, pages = {52--59}, publisher = {Elsevier}, volume = {344}, number = {1}, year = {2016}, doi = {10.1016/j.crme.2015.08.002}, language = {en}, }
TY - JOUR AU - Ramon S. Martins AU - Anselmo Soeiro Pereira AU - Gilmar Mompean AU - Laurent Thais AU - Roney Leon Thompson TI - An objective perspective for classic flow classification criteria JO - Comptes Rendus. Mécanique PY - 2016 SP - 52 EP - 59 VL - 344 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2015.08.002 LA - en ID - CRMECA_2016__344_1_52_0 ER -
%0 Journal Article %A Ramon S. Martins %A Anselmo Soeiro Pereira %A Gilmar Mompean %A Laurent Thais %A Roney Leon Thompson %T An objective perspective for classic flow classification criteria %J Comptes Rendus. Mécanique %D 2016 %P 52-59 %V 344 %N 1 %I Elsevier %R 10.1016/j.crme.2015.08.002 %G en %F CRMECA_2016__344_1_52_0
Ramon S. Martins; Anselmo Soeiro Pereira; Gilmar Mompean; Laurent Thais; Roney Leon Thompson. An objective perspective for classic flow classification criteria. Comptes Rendus. Mécanique, Volume 344 (2016) no. 1, pp. 52-59. doi : 10.1016/j.crme.2015.08.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.08.002/
[1] Application of vortex identification schemes to direct numerical simulation data of a transitional boundary layer, Phys. Fluids, Volume 25 (2013)
[2] An objective definition of a vortex, J. Fluid Mech., Volume 525 (2005), pp. 1-26
[3] On the identification of a vortex, J. Fluid Mech., Volume 285 (1995), pp. 69-94
[4] Eddies, stream, and convergence zones in turbulent flows, Center for Turbulence Research – Proceedings of Summer Program Report CTR-S88, 1988, pp. 193-208
[5] A general classification of three-dimensional flow fields, Phys. Fluids A, Volume 2 (1990) no. 5, pp. 765-777
[6] On the relationships between local vortex identification schemes, J. Fluid Mech., Volume 535 (2005), pp. 189-214
[7] Sur une propriété topologique des applications globalement canoniques de la mécanique classique, C. R. Acad. Sci. Paris, Ser. I, Volume 261 (1965), pp. 3719-3722
[8] Construction of steady-state hydromagnetic dynamos. I. Spatially periodic fields, Courant Institute of Mathematical Sciences, New York, 1967 (Report AFOSR-67-0124 MF-53)
[9] Construction of steady-state hydromagnetic dynamos. II. The spherical conductor, Courant Institute of Mathematical Sciences, New York, 1967 (Report AFOSR-67-0976 MF-54)
[10] Mechanisms for generating coherent packets of hairpin vortices in channel flow, J. Fluid Mech., Volume 387 (1999), pp. 353-396
[11] Définition d'un transport associé à un modèle de fluide du deuxième ordre. Comparaison de diverses lois de comportement, C. R. Acad. Sci. Paris, Ser. A, Volume 282 (1976), pp. 923-926
[12] Approximation du second ordre de la loi de comportement des fluides simples. Lois classiques déduites de l'introduction d'un nouveau tenseur objectif, Arch. Mech., Volume 28 (1976) no. 2, pp. 189-198
[13] Objective and generally applicable criteria for flow classification, J. Non-Newton. Fluid Mech., Volume 6 (1979), pp. 69-76
[14] The kinematics of stretching and alignment of material elements in general flow fields, J. Fluid Mech., Volume 236 (1992), pp. 415-444
[15] Stretching and alignment in chaotic and turbulent flows, Chaos Solitons Fractals, Volume 4 (1994) no. 6, pp. 1031-1055
[16] What is a vortex?, COBEM (2009)
[17] Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., Volume 66 (1991), pp. 2204-2206
[18] Essential spectrum and local instability condition in hydrodynamics, Phys. Lett. A, Volume 152 (1991), pp. 199-204
[19] A general transformation procedure for differential viscoelastic models, J. Non-Newton. Fluid Mech., Volume 111 (2003), pp. 151-174
- New objective Liutex vector based on an optimization procedure, International Journal of Heat and Fluid Flow, Volume 107 (2024), p. 109407 | DOI:10.1016/j.ijheatfluidflow.2024.109407
- Local flow topology of a polymer-laden turbulent boundary layer, Journal of Fluid Mechanics, Volume 983 (2024) | DOI:10.1017/jfm.2024.131
- Inelastic and flow-type parameter models for non-Newtonian fluids, Journal of Non-Newtonian Fluid Mechanics, Volume 320 (2023), p. 105106 | DOI:10.1016/j.jnnfm.2023.105106
- Eulerian and Lagrangian coherent structures in a positive surge, Experiments in Fluids, Volume 63 (2022) no. 2 | DOI:10.1007/s00348-022-03383-z
- A letter for objective Liutex, Journal of Hydrodynamics, Volume 34 (2022) no. 5, p. 965 | DOI:10.1007/s42241-022-0064-x
- Three-dimensional characterization of Reynolds shear stress in near-wall coherent structures of polymer drag reduced turbulent boundary layers, Experiments in Fluids, Volume 62 (2021) no. 8 | DOI:10.1007/s00348-021-03263-y
- Can vortex criteria be objectivized?, Journal of Fluid Mechanics, Volume 908 (2021) | DOI:10.1017/jfm.2020.937
- References, Liutex and Its Applications in Turbulence Research (2021), p. 415 | DOI:10.1016/b978-0-12-819023-4.16001-x
- Theoretical predictions for upper-convected Maxwell fluids in mixed shear and planar extensional flows, AIP Advances, Volume 10 (2020) no. 5 | DOI:10.1063/5.0010178
- State of the Art in Time‐Dependent Flow Topology: Interpreting Physical Meaningfulness Through Mathematical Properties, Computer Graphics Forum, Volume 39 (2020) no. 3, p. 811 | DOI:10.1111/cgf.14037
- Hyper-Objective Vortices, IEEE Transactions on Visualization and Computer Graphics, Volume 26 (2020) no. 3, p. 1532 | DOI:10.1109/tvcg.2018.2868760
- Characterization of near-wall structures in the log-region of a turbulent boundary layer by means of conditional statistics of tomographic PIV data, Experimental Thermal and Fluid Science, Volume 105 (2019), p. 191 | DOI:10.1016/j.expthermflusci.2019.03.020
- Objective Vortex Corelines of Finite-sized Objects in Fluid Flows, IEEE Transactions on Visualization and Computer Graphics, Volume 25 (2019) no. 1, p. 956 | DOI:10.1109/tvcg.2018.2864828
- Objective Omega vortex identification method, Journal of Hydrodynamics, Volume 31 (2019) no. 3, p. 455 | DOI:10.1007/s42241-019-0028-y
- An objective version of the Rortex vector for vortex identification, Physics of Fluids, Volume 31 (2019) no. 6 | DOI:10.1063/1.5095624
- The State of the Art in Vortex Extraction, Computer Graphics Forum, Volume 37 (2018) no. 6, p. 149 | DOI:10.1111/cgf.13319
- Rortex and comparison with eigenvalue-based vortex identification criteria, Physics of Fluids, Volume 30 (2018) no. 8 | DOI:10.1063/1.5040112
- , 55th AIAA Aerospace Sciences Meeting (2017) | DOI:10.2514/6.2017-0989
- Generic objective vortices for flow visualization, ACM Transactions on Graphics, Volume 36 (2017) no. 4, p. 1 | DOI:10.1145/3072959.3073684
- Statistics and tensor analysis of polymer coil–stretch mechanism in turbulent drag reducing channel flow, Journal of Fluid Mechanics, Volume 824 (2017), p. 135 | DOI:10.1017/jfm.2017.332
Cité par 20 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier