Comptes Rendus
An objective perspective for classic flow classification criteria
[Une perspective objective pour des critères classiques de classification d'écoulements]
Comptes Rendus. Mécanique, Volume 344 (2016) no. 1, pp. 52-59.

Quatre critères classiques utilisés pour la classification des écoulements complexes sont étudiés ici. Ces critères sont utiles pour identifier les régions de l'écoulement liées au cisaillement, à l'extention ou au mouvement de corps rigides. Ces critères habituels, à savoir Q, Δ, λ2 and λcr/λci, utilisent le tenseur taux de rotation du fluide, qui est connu pour varier par rapport au système de référence. Les avantages qu'il y a à utiliser des critères objectifs (invariants par rapport à une transformation générale pour un système de référence) sont discutés dans le present travail. À cet égard, nous construisons des versions des critères classiques en remplaçant la vorticité standard, une quantité non objective, par la vorticité effective, un taux de rotation par rapport à la vitesse angulaire des vecteurs propres du tenseur taux de déformation. Les critères classiques et leurs versions objectives correspondantes sont appliqués pour classifier deux écoulements complexes : l'écoulement ABC transitoire et l'écoulement à travers une contraction brusque 4:1. Les versions objectives de ces critères fournissent des informations plus riches pour la cinématique de l'écoulement.

Four classic criteria used to the classification of complex flows are discussed here. These criteria are useful to identify regions of the flow related to shear, elongation or rigid-body motion. These usual criteria, namely Q, Δ, λ2 and λcr/λci, use the fluid's rate-of-rotation tensor, which is known to vary with respect to a reference frame. The advantages of using objective (invariant with respect to a general transformation on the reference frame) criteria are discussed in the present work. In this connection, we construct versions of classic criteria replacing standard vorticity, a non-objective quantity, by effective vorticity, a rate-of-rotation tensor with respect to the angular velocity of the eigenvectors of the strain-rate tensor. The classic criteria and their corresponding objective versions are applied to classify two complex flows: the transient ABC flow and the flow through the abrupt 4:1 contraction. It is shown that the objective versions of the criteria provide richer information on the kinematics of the flow.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2015.08.002
Keywords: Objectivity, Flow classification, ABC flow, Contraction, Vortex identification
Mots-clés : Objectivité, Classification d'écoulements, Écoulement ABC, Contraction, Identification de tourbillons

Ramon S. Martins 1 ; Anselmo Soeiro Pereira 1 ; Gilmar Mompean 1 ; Laurent Thais 1 ; Roney Leon Thompson 2

1 Université de Lille-1 – Sciences et Technologies, Polytech'Lille, and Laboratoire de mécanique de Lille (LML), UMR–CNRS 8107, Cité scientifique, 59655 Villeneuve-d'Ascq cedex, France
2 Laboratório de Mecânica Teórica Aplicada (LMTA), Department of Mechanical Engineering, Universidade Federal Fluminense, Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil
@article{CRMECA_2016__344_1_52_0,
     author = {Ramon S. Martins and Anselmo Soeiro Pereira and Gilmar Mompean and Laurent Thais and Roney Leon Thompson},
     title = {An objective perspective for classic flow classification criteria},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {52--59},
     publisher = {Elsevier},
     volume = {344},
     number = {1},
     year = {2016},
     doi = {10.1016/j.crme.2015.08.002},
     language = {en},
}
TY  - JOUR
AU  - Ramon S. Martins
AU  - Anselmo Soeiro Pereira
AU  - Gilmar Mompean
AU  - Laurent Thais
AU  - Roney Leon Thompson
TI  - An objective perspective for classic flow classification criteria
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 52
EP  - 59
VL  - 344
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2015.08.002
LA  - en
ID  - CRMECA_2016__344_1_52_0
ER  - 
%0 Journal Article
%A Ramon S. Martins
%A Anselmo Soeiro Pereira
%A Gilmar Mompean
%A Laurent Thais
%A Roney Leon Thompson
%T An objective perspective for classic flow classification criteria
%J Comptes Rendus. Mécanique
%D 2016
%P 52-59
%V 344
%N 1
%I Elsevier
%R 10.1016/j.crme.2015.08.002
%G en
%F CRMECA_2016__344_1_52_0
Ramon S. Martins; Anselmo Soeiro Pereira; Gilmar Mompean; Laurent Thais; Roney Leon Thompson. An objective perspective for classic flow classification criteria. Comptes Rendus. Mécanique, Volume 344 (2016) no. 1, pp. 52-59. doi : 10.1016/j.crme.2015.08.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.08.002/

[1] B. Pierce; P. Moin; T. Sayadi Application of vortex identification schemes to direct numerical simulation data of a transitional boundary layer, Phys. Fluids, Volume 25 (2013)

[2] G. Haller An objective definition of a vortex, J. Fluid Mech., Volume 525 (2005), pp. 1-26

[3] J. Jeong; F. Hussain On the identification of a vortex, J. Fluid Mech., Volume 285 (1995), pp. 69-94

[4] J.C.R. Hunt; A.A. Wray; P. Moin Eddies, stream, and convergence zones in turbulent flows, Center for Turbulence Research – Proceedings of Summer Program Report CTR-S88, 1988, pp. 193-208

[5] M.S. Chong; A.E. Perry; B.J. Cantwell A general classification of three-dimensional flow fields, Phys. Fluids A, Volume 2 (1990) no. 5, pp. 765-777

[6] P. Chakraborty; S. Balanchandar; R.J. Adrian On the relationships between local vortex identification schemes, J. Fluid Mech., Volume 535 (2005), pp. 189-214

[7] V.I. Arnold Sur une propriété topologique des applications globalement canoniques de la mécanique classique, C. R. Acad. Sci. Paris, Ser. I, Volume 261 (1965), pp. 3719-3722

[8] S. Childress Construction of steady-state hydromagnetic dynamos. I. Spatially periodic fields, Courant Institute of Mathematical Sciences, New York, 1967 (Report AFOSR-67-0124 MF-53)

[9] S. Childress Construction of steady-state hydromagnetic dynamos. II. The spherical conductor, Courant Institute of Mathematical Sciences, New York, 1967 (Report AFOSR-67-0976 MF-54)

[10] J. Zhou; R.J. Adrian; S. Balachandar; T.M. Kendall Mechanisms for generating coherent packets of hairpin vortices in channel flow, J. Fluid Mech., Volume 387 (1999), pp. 353-396

[11] R. Drouot Définition d'un transport associé à un modèle de fluide du deuxième ordre. Comparaison de diverses lois de comportement, C. R. Acad. Sci. Paris, Ser. A, Volume 282 (1976), pp. 923-926

[12] R. Drouot; M. Lucius Approximation du second ordre de la loi de comportement des fluides simples. Lois classiques déduites de l'introduction d'un nouveau tenseur objectif, Arch. Mech., Volume 28 (1976) no. 2, pp. 189-198

[13] G. Astarita Objective and generally applicable criteria for flow classification, J. Non-Newton. Fluid Mech., Volume 6 (1979), pp. 69-76

[14] E. Dresselhaus; M. Tabor The kinematics of stretching and alignment of material elements in general flow fields, J. Fluid Mech., Volume 236 (1992), pp. 415-444

[15] M. Tabor; I. Klapper Stretching and alignment in chaotic and turbulent flows, Chaos Solitons Fractals, Volume 4 (1994) no. 6, pp. 1031-1055

[16] R.L. Thompson; R.D.A. Bacchi; F.J. Machado What is a vortex?, COBEM (2009)

[17] S. Friedlander; M.M. Vishik Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., Volume 66 (1991), pp. 2204-2206

[18] A. Lifschitz Essential spectrum and local instability condition in hydrodynamics, Phys. Lett. A, Volume 152 (1991), pp. 199-204

[19] G. Mompean; R.L. Thompson; P.R. Souza Mendes A general transformation procedure for differential viscoelastic models, J. Non-Newton. Fluid Mech., Volume 111 (2003), pp. 151-174

  • Bowen Yan; Yiqian Wang; Yifei Yu; Chaoqun Liu New objective Liutex vector based on an optimization procedure, International Journal of Heat and Fluid Flow, Volume 107 (2024), p. 109407 | DOI:10.1016/j.ijheatfluidflow.2024.109407
  • Lucas Warwaruk; Sina Ghaemi Local flow topology of a polymer-laden turbulent boundary layer, Journal of Fluid Mechanics, Volume 983 (2024) | DOI:10.1017/jfm.2024.131
  • Robert J. Poole Inelastic and flow-type parameter models for non-Newtonian fluids, Journal of Non-Newtonian Fluid Mechanics, Volume 320 (2023), p. 105106 | DOI:10.1016/j.jnnfm.2023.105106
  • L. Thomas; L. David Eulerian and Lagrangian coherent structures in a positive surge, Experiments in Fluids, Volume 63 (2022) no. 2 | DOI:10.1007/s00348-022-03383-z
  • Yifei Yu; Yi-qian Wang; Chaoqun Liu A letter for objective Liutex, Journal of Hydrodynamics, Volume 34 (2022) no. 5, p. 965 | DOI:10.1007/s42241-022-0064-x
  • Y. Shah; S. Ghaemi; S. Yarusevych Three-dimensional characterization of Reynolds shear stress in near-wall coherent structures of polymer drag reduced turbulent boundary layers, Experiments in Fluids, Volume 62 (2021) no. 8 | DOI:10.1007/s00348-021-03263-y
  • George Haller Can vortex criteria be objectivized?, Journal of Fluid Mechanics, Volume 908 (2021) | DOI:10.1017/jfm.2020.937
  • References, Liutex and Its Applications in Turbulence Research (2021), p. 415 | DOI:10.1016/b978-0-12-819023-4.16001-x
  • Alberto Castellanos Campillo; Juan Pablo Aguayo Vallejo; Rafael Herrera Nájera; Ángel Enrique Chávez Castellanos Theoretical predictions for upper-convected Maxwell fluids in mixed shear and planar extensional flows, AIP Advances, Volume 10 (2020) no. 5 | DOI:10.1063/5.0010178
  • Roxana Bujack; Lin Yan; Ingrid Hotz; Christoph Garth; Bei Wang State of the Art in Time‐Dependent Flow Topology: Interpreting Physical Meaningfulness Through Mathematical Properties, Computer Graphics Forum, Volume 39 (2020) no. 3, p. 811 | DOI:10.1111/cgf.14037
  • Tobias Gunther; Holger Theisel Hyper-Objective Vortices, IEEE Transactions on Visualization and Computer Graphics, Volume 26 (2020) no. 3, p. 1532 | DOI:10.1109/tvcg.2018.2868760
  • Fabio J.W.A. Martins; Jean-Marc Foucaut; Michel Stanislas; Luis Fernando A. Azevedo Characterization of near-wall structures in the log-region of a turbulent boundary layer by means of conditional statistics of tomographic PIV data, Experimental Thermal and Fluid Science, Volume 105 (2019), p. 191 | DOI:10.1016/j.expthermflusci.2019.03.020
  • Tobias Gunther; Holger Theisel Objective Vortex Corelines of Finite-sized Objects in Fluid Flows, IEEE Transactions on Visualization and Computer Graphics, Volume 25 (2019) no. 1, p. 956 | DOI:10.1109/tvcg.2018.2864828
  • Jian-ming Liu; Yi-sheng Gao; Yi-qian Wang; Chaoqun Liu Objective Omega vortex identification method, Journal of Hydrodynamics, Volume 31 (2019) no. 3, p. 455 | DOI:10.1007/s42241-019-0028-y
  • Jianming Liu; Yisheng Gao; Chaoqun Liu An objective version of the Rortex vector for vortex identification, Physics of Fluids, Volume 31 (2019) no. 6 | DOI:10.1063/1.5095624
  • Tobias Günther; Holger Theisel The State of the Art in Vortex Extraction, Computer Graphics Forum, Volume 37 (2018) no. 6, p. 149 | DOI:10.1111/cgf.13319
  • Yisheng Gao; Chaoqun Liu Rortex and comparison with eigenvalue-based vortex identification criteria, Physics of Fluids, Volume 30 (2018) no. 8 | DOI:10.1063/1.5040112
  • Brenden Epps, 55th AIAA Aerospace Sciences Meeting (2017) | DOI:10.2514/6.2017-0989
  • Tobias Günther; Markus Gross; Holger Theisel Generic objective vortices for flow visualization, ACM Transactions on Graphics, Volume 36 (2017) no. 4, p. 1 | DOI:10.1145/3072959.3073684
  • Anselmo S. Pereira; Gilmar Mompean; Laurent Thais; Roney L. Thompson Statistics and tensor analysis of polymer coil–stretch mechanism in turbulent drag reducing channel flow, Journal of Fluid Mechanics, Volume 824 (2017), p. 135 | DOI:10.1017/jfm.2017.332

Cité par 20 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: