Comptes Rendus
A phase-resolved, depth-averaged non-hydrostatic numerical model for cross-shore wave propagation
Comptes Rendus. Mécanique, Volume 344 (2016) no. 1, pp. 42-51.

In this study, a phase-resolved and depth-averaged non-hydrostatic numerical model (SNH model) is developed. The non-incremental pressure-correction method is employed to solve the equation system in two successive steps. Firstly, an approximate Riemann solver in the framework of finite volume methods is employed to solve the hydrostatic shallow-water equations (SWE) on a collocated grid to obtain provisional solutions. Then, the intermediate solutions is updated by considering the non-hydrostatic pressure effect; a semi-staggered grid is used in this step to avoid predicting checkboard pressure field. A series of benchmark tests are used to validate the numerical model, showing that the developed model is well-balanced and describes the wetting and drying processes accurately. By employing a shock-capturing numerical scheme, the wave-breaking phenomenon is reasonably simulated without using any ad-hoc techniques. Compared with the SWE model, the wave shape can be well-preserved and the numerical predictions are much improved by using the SNH model.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2015.09.005
Mots clés : Non-hydrostatic, Dispersivity, Wave breaking, Well-balanced, Shock-capturing, HLL
Xinhua Lu 1 ; Xiaofeng Zhang 1 ; Bing Mao 2 ; Bingjiang Dong 3

1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
2 Yangtze River Scientific Research Institute, Wuhan 430015, China
3 Hydrology Bureau, Yangtze River Water Resource Commission, Wuhan 430010, China
@article{CRMECA_2016__344_1_42_0,
     author = {Xinhua Lu and Xiaofeng Zhang and Bing Mao and Bingjiang Dong},
     title = {A phase-resolved, depth-averaged non-hydrostatic numerical model for cross-shore wave propagation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {42--51},
     publisher = {Elsevier},
     volume = {344},
     number = {1},
     year = {2016},
     doi = {10.1016/j.crme.2015.09.005},
     language = {en},
}
TY  - JOUR
AU  - Xinhua Lu
AU  - Xiaofeng Zhang
AU  - Bing Mao
AU  - Bingjiang Dong
TI  - A phase-resolved, depth-averaged non-hydrostatic numerical model for cross-shore wave propagation
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 42
EP  - 51
VL  - 344
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2015.09.005
LA  - en
ID  - CRMECA_2016__344_1_42_0
ER  - 
%0 Journal Article
%A Xinhua Lu
%A Xiaofeng Zhang
%A Bing Mao
%A Bingjiang Dong
%T A phase-resolved, depth-averaged non-hydrostatic numerical model for cross-shore wave propagation
%J Comptes Rendus. Mécanique
%D 2016
%P 42-51
%V 344
%N 1
%I Elsevier
%R 10.1016/j.crme.2015.09.005
%G en
%F CRMECA_2016__344_1_42_0
Xinhua Lu; Xiaofeng Zhang; Bing Mao; Bingjiang Dong. A phase-resolved, depth-averaged non-hydrostatic numerical model for cross-shore wave propagation. Comptes Rendus. Mécanique, Volume 344 (2016) no. 1, pp. 42-51. doi : 10.1016/j.crme.2015.09.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.09.005/

[1] J.H. Sorensen Hazard warning systems: review of 20 years of progress, Nat. Hazards Rev., Volume 1 (2000), pp. 119-125

[2] M. Guerra; R. Cienfuegos; C. Escauriaza; F. Marche; J. Galaz Modeling rapid flood propagation over natural terrains using a well-balanced scheme, J. Hydraul. Eng., ASCE, Volume 140 (2014)

[3] J. Roelvink; I. Brøker Cross-shore profile models, Coast. Eng., Volume 21 (1993), pp. 163-191

[4] Y. Hu; X. Guo; X. Lu; Y. Liu; R.A. Dalrymple; L. Shen Idealized numerical simulation of breaking water wave propagating over a viscous mud layer, Phys. Fluids, Volume 24 (2012), p. 112104

[5] X. Lu; X. Zhang; B. Dong; H. Liu; B. Mao Physical based numerical schemes for the discretization of the sediment settling term, C. R., Méc., Volume 341 (2013), pp. 581-591

[6] G.S. Stelling; M. Zijlema An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation, Int. J. Numer. Methods Fluids, Volume 43 (2003), pp. 1-23

[7] J.A. Zelt The run-up of nonbreaking and breaking solitary waves, Coast. Eng., Volume 15 (1991), pp. 205-246

[8] A.B. Kennedy; Q. Chen; J.T. Kirby; R.A. Dalrymple Boussinesq modeling of wave transformation, breaking, and runup. I: 1D, J. Waterw. Port Coast. Ocean Eng., Volume 126 (2000), pp. 39-47

[9] P. Madsen; O. Sørensen; H. Schäffer Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves, Coast. Eng., Volume 32 (1997), pp. 255-287

[10] M.V. Mccabe; P.K. Stansby; D.D. Apsley Random wave runup and overtopping a steep sea wall: shallow-water and Boussinesq modelling with generalised breaking and wall impact algorithms validated against laboratory and field measurements, Coast. Eng., Volume 74 (2013), pp. 33-49

[11] F. Shi; J.T. Kirby; J.C. Harris; J.D. Geimana; S.T. Grilli A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation, Ocean Model., Volume 43 (2012), pp. 36-51

[12] M. Tissier; P. Bonneton; F. Marche; F. Chazel; D. Lannes A new approach to handle wave breaking in fully non-linear Boussinesq models, Coast. Eng., Volume 67 (2012), pp. 54-66

[13] M. Kazolea; A.I. Delis; C.E. Synolakis Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations, J. Comput. Phys., Volume 271 (2014), pp. 281-305

[14] Y. Yamazaki; Z. Kowalik; K.F. Cheung Depth-integrated, non-hydrostatic model for wave breaking and run-up, Int. J. Numer. Methods Fluids, Volume 61 (2009), pp. 473-497

[15] R.A. Walters A semi-implicit finite element model for non-hydrostatic (dispersive) surface waves, Int. J. Numer. Methods Fluids, Volume 49 (2005), pp. 721-737

[16] Z. Wei; Y. Jia Simulation of nearshore wave processes by a depth-integrated non-hydrostatic finite element model, Coast. Eng., Volume 83 (2014), pp. 93-107

[17] S. Bryson; Y. Epshteyn; A. Kurganov; G. Petrova Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system, ESAIM: Math. Model. Numer. Anal., Volume 45 (2011), pp. 423-446

[18] X. Lu; B. Dong; B. Mao; X. Zhang A robust and well-balanced numerical model for solving the two-layer shallow water equations over uneven topography, C. R., Méc., Volume 343 (2015), pp. 429-442

[19] C.W. Shu; S. Osher Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., Volume 77 (1988), pp. 439-471

[20] F.R. Fiedler; J.A. Ramirez A numerical method for simulating discontinuous shallow flow over an infiltrating surface, Int. J. Numer. Methods Fluids, Volume 32 (2000), pp. 219-239

[21] A. Harten; P.D. Lax; B. van Leer On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., Volume 25 (1983), pp. 35-61

[22] E.F. Toro; M. Spruce; W. Speares Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, Volume 4 (1994), pp. 25-34

[23] E. Audusse; F. Bouchut; M.O. Bristeau; R. Klein; B. Perthame A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., Volume 25 (2004), pp. 2050-2065

[24] B. van Leer Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys., Volume 32 (1979), pp. 101-136

[25] P.L. Roe; M.J. Baines Algorithms for advection and shock problems, 4th GAMM Conference on Numerical Methods in Fluid Mechanics, Vieweg, Braunschweig, 1982, pp. 281-290

[26] L. Fraccarollo; E.F. Toro Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems, J. Hydraul. Res., Volume 33 (1995), pp. 843-864

[27] B. Yu; Y. Kawaguchi; W. Tao; H. Ozoe Checkerboard pressure predictions due to the underrelaxation factor and time step size for a nonstaggered grid with momentum interpolation method, Numer. Heat Transf., Part B, Volume 41 (2002), pp. 85-94

[28] I.A. Svendsen Introduction to Nearshore Hydrodynamics, World Scientific, Singapore, 2006

[29] H.A. van de Vorst Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Comput., Volume 13 (1992), pp. 631-644

[30] C.E. Synolakis The runup of solitary waves, J. Fluid Mech., Volume 185 (1987), pp. 523-545

[31] M.J. Briggs; C.E. Synolakis; U. Kanoglu; D.R. Creen Runup of solitary waves on a vertical wall, Long Wave Runup Models: Proceedings of the International Workshop, World Scientific, Singapore, Friday Harbor, San Juan Island, WA, USA, 1995, pp. 375-383

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

SPH numerical computations of wave impact onto a vertical wall with experimental comparisons

Xuezhou Lu; Jean-Marc Cherfils; Grégory Pinon; ...

C. R. Méca (2021)