Comptes Rendus
Resin injection in clays with high plasticity
Comptes Rendus. Mécanique, Volume 344 (2016) no. 11-12, pp. 797-806.

Regarding the injection process of polyurethane resins in clays with high plasticity, this paper presents the experimental results of the pressuremeter and cone penetration tests before and after injection. A very important increase in pressure limit or in soil resistance can be observed for all the studied depths close to the injection points. An analytical analysis for cylindrical pore cavity expansion in cohesive frictional soils obeying the Mohr–Coulomb criterion was then used to reproduce the pressuremeter tests before and after injection. The model parameters were calibrated by maintaining constant the elasticity parameters as well as the friction angel before and after injection. A significant increase in cohesion was observed because of soil densification after resin expansion. The estimated undrained cohesions, derived from the parameters of the Mohr–Coulomb criterion, were also compared with the cone penetration tests. Globally, the model predictions show the efficiency of resin injection in clay soils with high plasticity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2016.09.001
Mots clés : Resin injection, Cavity expansion, Pressuremeter tests, Cone penetration tests

Hossein Nowamooz 1

1 ICUBE, UMR 7357, CNRS, INSA de Strasbourg, 24, boulevard de la Victoire, 67084 Strasbourg, France
@article{CRMECA_2016__344_11-12_797_0,
     author = {Hossein Nowamooz},
     title = {Resin injection in clays with high plasticity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {797--806},
     publisher = {Elsevier},
     volume = {344},
     number = {11-12},
     year = {2016},
     doi = {10.1016/j.crme.2016.09.001},
     language = {en},
}
TY  - JOUR
AU  - Hossein Nowamooz
TI  - Resin injection in clays with high plasticity
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 797
EP  - 806
VL  - 344
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2016.09.001
LA  - en
ID  - CRMECA_2016__344_11-12_797_0
ER  - 
%0 Journal Article
%A Hossein Nowamooz
%T Resin injection in clays with high plasticity
%J Comptes Rendus. Mécanique
%D 2016
%P 797-806
%V 344
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2016.09.001
%G en
%F CRMECA_2016__344_11-12_797_0
Hossein Nowamooz. Resin injection in clays with high plasticity. Comptes Rendus. Mécanique, Volume 344 (2016) no. 11-12, pp. 797-806. doi : 10.1016/j.crme.2016.09.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.09.001/

[1] O. Buzzi; S. Fityus; Y. Sasaki; S. Sloan Structure and properties of expanding polyurethane foam in the context of foundation remediation in expansive soil, Mech. Mater., Volume 40 (2008), pp. 1012-1021

[2] O. Buzzi; S. Fityus; S. Sloan Use of expanding polyurethane resin to remediate expansive soil foundations, Can. Geotech. J., Volume 47 (2010) no. 6, pp. 623-634

[3] R. Valentino; E. Romeo; A. Misra Mechanical aspects of micropiles made of reinforced polyurethane resins, Geotech. Geolog. Eng., Volume 31 (2013), pp. 463-478

[4] R. Valentino; E. Romeo; D. Stevanoni An experimental study on the mechanical behaviour of two polyurethane resins used for geotechnical applications, Mech. Mater., Volume 71 (2014), pp. 101-113

[5] Z.H. Tu; V.P.W. Shim; C.T. Lim Plastic deformation modes in rigid polyurethane foam under static loading, Int. J. Solids Struct., Volume 38 (2001), pp. 9267-9279

[6] N.C. Hilyard; A. Cunningham Low Density Cellular Plastics, Chapman & Hall, London, 1994

[7] L.J. Gibson; M.F. Ashby Cellular Solids, Cambridge University Press, Cambridge, UK, 1997

[8] C.M. Ford; L.J. Gibson Uniaxial strength asymmetry in cellular materials: an analytical model, Int. J. Mech. Sci., Volume 40 (1998) no. 6, pp. 521-531

[9] , ASTM International, West Conshohocken, PA, USA, 2007 (ASTM D4719-07 Standard Test Methods for Prebored Pressuremeter Testing in Soils)

[10] , ASTM International, West Conshohocken, PA, USA, 2005 (ASTM D3441-05 Standard Test Method for Mechanical Cone Penetration Tests of Soil)

[11] G.S. Hollabaugh, J.M. Dees, Propellant Gas Fracture Stimulation of a Horizontal Austin Chalk Wellbore. Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, 3–6 October 1993, SPE-26584-MS, . | DOI

[12] J.M. Dees; P.J. Handren A new method of overbalanced perforating and surging of resin for sand control, J. Pet. Technol., Volume 46 (1994) no. 5, pp. 431-435 (SPE-26545-PA) | DOI

[13] R.E. Gibson; W.F. Anderson In situ measurement of soil properties with the pressuremeter, Civil Eng. Public Works Rev., Volume 56 (1961), pp. 615-618

[14] P. Chadwick The quasi-static expansion of a spherical cavity in metals and ideal soils, Q. J. Mech. Appl. Math. (1), Volume XII (1959), pp. 52-71

[15] A.C. Palmer Undrained plane–strain expansion of a cylindrical cavity in clay: a simple interpretation of the pressuremeter test, Géotechnique, Volume 22 (1972) no. 3, pp. 451-457

[16] A.S. Vesic Expansion of cavities in infinite soil mass, J. Soil Mech. Found. Div., Volume 98 (1972) no. 3, pp. 265-290

[17] J.M.O. Hughes; C.P. Wrath; D. Windle Pressuremeter tests in sands, Géotechnique, Volume 27 (1977) no. 4, pp. 455-477

[18] M.F. Randolph; J.P. Carter; C.P. Wrath Driven piles in clay – the effects of installation and subsequent consolidation, Géotechnique, Volume 29 (1979) no. 4, pp. 361-393

[19] J.P. Carter; S.K. Yeung Analysis of cylindrical cavity expansion in a strain weakening material, Comput. Geotech., Volume 1 (1985), pp. 161-180

[20] I.P. Carter; J.R. Booker; S.K. Yeung Cavity expansion in cohesive frictional soils, Géotechnique, Volume 36 (1986) no. 3, pp. 349-358

[21] H.S. Yu; G.T. Houlsby Finite cavity expansion in dilatant soils: loading analysis, Géotechnique, Volume 41 (1991) no. 2, pp. 173-183

[22] J.-F. Zou; H. Luo; L. Li Mechanism analysis of fracture grouting in soil with large strain considering intermediate principal stress, J. Rock Soil Mech., Volume 29 (2008) no. 9, pp. 2515-2520

[23] I.F. Collins; J.R. Stimpson Similarity solutions for drained and undrained cavity expansions in soils, Géotechnique, Volume 44 (1994) no. 1, pp. 21-34

[24] L.F. Cao; C.I. Teh; M.F. Chang Undrained cavity expansion in modified Cam clay I: theoretical analysis, Géotechnique, Volume 51 (2001) no. 4, pp. 323-334

[25] A. Dei Svaldi; M. Favaretti; A. Pasquetto; G. Vinco Analytical modelling of the soil improvement by injections of high expansion pressure resin, Bull. Angew. Geol., Volume 10 (2005) no. 2, pp. 71-81

[26] S.L. Chen; N.Y. Abousleiman Exact undrained elasto-plastic solution for cylindrical cavity expansion in modified Cam Clay soil, Géotechnique, Volume 62 (2012) no. 5, pp. 447-456

[27] K. Terzaghi Theoretical Soil Mechanics, John Wiley and Sons, 1943

[28] E. De Beer Static cone penetration testing in clay and loam, Sonder Symposium (1977), pp. 15-23

[29] A. Skempton The bearing capacity of clays, Building Research Congress, National Research Council (1951), pp. 180-189

[30] A. Vesic Principles of Pile Foundation Design, Duke University, Durham, NC, USA, 1975

[31] B. Ladanyi Deep punching of sensitive clays, 3rd Pan American Conference on Soil Mechanics and Foundation Engineering, Sociedad Venezolana de Mecánica del Suelo e Ingeniería de Fundaciones (1967), pp. 533-546

[32] C. Teh An analytical study of the cone penetration test, Oxford University, Oxford, UK, 1987 (PhD thesis)

[33] T. Lunne; P.K. Robertson; J.J.M. Powell Cone Penetration Testing in Geotechnical Practice, Blackie Academic/Routledge Publishing, New York, 1997

Cité par Sources :

Commentaires - Politique