The solidification of binary eutectic alloys produces two-phase composite materials in which the microstructure, that is, the geometrical distribution of the two solid phases, results from complex pattern-formation processes at the moving solid–liquid interface. Since the volume fraction of the two solids depends on the local composition, solidification dynamics can be strongly influenced by thermosolutal convection in the liquid. In this contribution, we review our experimental and numerical work devoted to the understanding of eutectic solidification under purely diffusive conditions, which will soon be tested and extended during the microgravity experiment TRANSPARENT ALLOYS planned by the European Space Agency (ESA).
La solidification des alliages eutectiques binaires produit des matériaux composites biphasés, dont la microstructure, c'est-à-dire l'arrangement géométrique des deux phases cristallines dans le solide, résulte d'un processus complexe d'auto-organisation à l'interface solide–liquide en cours de croissance. Puisque la fraction volumique des phases solides est une fonction de la composition locale, la dynamique de solidification peut être fortement influencée par des mouvements de convection thermo-solutale dans le liquide. Dans cet article, nous faisons le point sur nos travaux expérimentaux et numériques dédiés à la compréhension de la croissance eutectique en conditions de transport purement diffusif. Ces résultats seront bientôt testés et étendus dans une expérience en micropesanteur TRANSPARENT ALLOYS prévue par l'Agence spatiale européenne (ESA).
Accepted:
Published online:
Mots-clés : Solidification, Expériences in situ, Modèles de champ de phase
Mathis Plapp 1; Sabine Bottin-Rousseau 2; Gabriel Faivre 2; Silvère Akamatsu 2
@article{CRMECA_2017__345_1_56_0, author = {Mathis Plapp and Sabine Bottin-Rousseau and Gabriel Faivre and Silv\`ere Akamatsu}, title = {Eutectic solidification patterns: {Interest} of microgravity environment}, journal = {Comptes Rendus. M\'ecanique}, pages = {56--65}, publisher = {Elsevier}, volume = {345}, number = {1}, year = {2017}, doi = {10.1016/j.crme.2016.10.008}, language = {en}, }
TY - JOUR AU - Mathis Plapp AU - Sabine Bottin-Rousseau AU - Gabriel Faivre AU - Silvère Akamatsu TI - Eutectic solidification patterns: Interest of microgravity environment JO - Comptes Rendus. Mécanique PY - 2017 SP - 56 EP - 65 VL - 345 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2016.10.008 LA - en ID - CRMECA_2017__345_1_56_0 ER -
%0 Journal Article %A Mathis Plapp %A Sabine Bottin-Rousseau %A Gabriel Faivre %A Silvère Akamatsu %T Eutectic solidification patterns: Interest of microgravity environment %J Comptes Rendus. Mécanique %D 2017 %P 56-65 %V 345 %N 1 %I Elsevier %R 10.1016/j.crme.2016.10.008 %G en %F CRMECA_2017__345_1_56_0
Mathis Plapp; Sabine Bottin-Rousseau; Gabriel Faivre; Silvère Akamatsu. Eutectic solidification patterns: Interest of microgravity environment. Comptes Rendus. Mécanique, Basic and applied researches in microgravity – A tribute to Bernard Zappoli’s contribution, Volume 345 (2017) no. 1, pp. 56-65. doi : 10.1016/j.crme.2016.10.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.10.008/
[1] Über die Theorie der Eisbildung, Insbesondere über die Eisbildung im Polarmeere, Sitz. Ber. - Österr. Akad. Wiss. Math.-Nat.wiss. Kl., II Math. Astron. Phys. Meteorol. Tech., Volume 98 (1889), pp. 965-983
[2] Über die Theorie der Eisbildung, Insbesondere über die Eisbildung im Polarmeere, Ann. Phys. Chem., Volume 42 (1891), pp. 269-286
[3] Josef Stefan: his life and legacy in the thermal sciences, Exp. Therm. Fluid Sci., Volume 31 (2007), pp. 795-803 | DOI
[4] Introduction to Stefan-type problems (C. Dafermos; M. Pokorny, eds.), Handbook of Differential Equations: Evolutionary Differential Equations, vol. IV, North-Holland, Amsterdam, 2008, pp. 377-484
[5] Dendritic growth velocities in microgravity, Phys. Rev. Lett., Volume 73 (1994), pp. 573-576
[6] Use of microgravity to interpret dendritic growth kinetics at small supercoolings, Vail, CO, USA, 4–9 August 1996 (J. Cryst. Growth), Volume 174 (1997), pp. 82-89 | DOI
[7] Three-dimensional dendrite-tip morphology, Phys. Rev. E, Volume 52 (1995), pp. 2778-2786
[8] Dendritic growth tip velocities and radii of curvature in microgravity, Metall. Mater. Trans. A, Volume 30 (1999), pp. 3177-3190 | DOI
[9] Mass-transport phenomena during solidification in microgravity – preliminary results of the 1st MEPHISTO flight experiment, J. Cryst. Growth, Volume 140 (1994), pp. 237-243 | DOI
[10] Solidification of aluminium–lithium alloys near the cell/dendrite transition-influence of solutal convection, J. Cryst. Growth, Volume 218 (2000), pp. 419-433 | DOI
[11] Morphological stability of a solid–liquid interface and cellular growth: insights from thermoelectric measurements in microgravity experiments, J. Cryst. Growth, Volume 279 (2005), pp. 195-205 | DOI
[12] Spatiotemporal dynamics of oscillatory cellular patterns in three-dimensional directional solidification, Phys. Rev. Lett., Volume 110 (2013) | DOI
[13] Oscillatory cellular patterns in three-dimensional directional solidification, Phys. Rev. E, Volume 92 (2015) | DOI
[14] D. Jarvis, O. Minster, Metallurgy in space, in: R. Roosz, M. Rettenmayr, Z. Gacsi (Eds.), Solidification and Gravity IV, Proc. 4th International Conference on Solidification and Gravity, Miskolc-Lillafüred, Hungary, 6–9 September 2004, pp. 1–18.
[15] Characterization of motion of dendrite fragment by X-ray radiography on earth and under microgravity environment, Materials Science Forum, Volume 790–791 (2014), pp. 311-316
[16] Pattern formation outside of equilibrium, Rev. Mod. Phys., Volume 65 (1993), p. 851
[17] Branching in Nature, Les Houches, France, vol. 13, EDP Sciences, Springer, 2001
[18] Fundamentals of Solidification, Trans Tech Publications, Zurich, Switzerland, 1998
[19] Instabilities and pattern formation in crystal growth, Rev. Mod. Phys., Volume 52 (1980), p. 1
[20] Lamellar and rod eutectic growth, Trans. Metall. Soc. AIME, Volume 236 (1966), p. 1129
[21] Eutectic spacing selection in lead-based alloy systems, Metall. Trans. A, Volume 22 (1991), pp. 2523-2533 | DOI
[22] Advanced solidification studies on transparent alloy systems: a new European solidification insert for material science glovebox on board the international space station, JOM, Volume 64 (2012), pp. 1097-1101 | DOI
[23] Dynamic effects in the lamellar-rod eutectic transition, Acta Mater., Volume 59 (2011), pp. 3102-3115 | DOI
[24] Transparent compounds that freeze like metals, Acta Metall., Volume 13 (1965), pp. 1212-1215 | DOI
[25] An experimental method for the in situ observation of eutectic growth patterns in bulk samples of transparent alloys, J. Cryst. Growth, Volume 306 (2007), pp. 465-472 | DOI
[26] Experimental evidence for a zigzag bifurcation in bulk lamellar eutectic growth, Phys. Rev. Lett., Volume 93 (2004)
[27] Stability of lamellar eutectic growth in thick samples, Philos. Mag., Volume 86 (2006) no. 24, p. 3703
[28] Phase-field simulation of solidification, Annu. Rev. Mater. Res., Volume 32 (2002), pp. 163-194
[29] Phase-field models in materials science, Model. Simul. Mater. Sci. Eng., Volume 17 (2009) no. 17
[30] Phase-Field Methods in Materials Science and Engineering, Wiley–VCH, Weinheim, 2010
[31] Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, Volume 57 (1998) no. 4, pp. 4323-4349
[32] Three-dimensional phase-field simulations of directional solidification, J. Cryst. Growth, Volume 303 (2007), pp. 49-57
[33] Quantitative phase-field modeling of two-phase solidification, Phys. Rev. E, Volume 72 (2005) no. 1
[34] Experimental determination of the stability diagram of a lamellar eutectic growth front, Phys. Rev. E, Volume 56 (1997), p. 780
[35] Morphological instabilities of lamellar eutectics, Metall. Mater. Trans. A, Volume 27 (1996), p. 635
[36] Pattern stability and trijunction motion in eutectic solidification, Phys. Rev. E, Volume 66 (2002)
[37] Overstability of lamellar eutectic growth below the minimum-undercooling spacing, Metall. Mater. Trans. A, Volume 35 (2004), p. 1815
[38] Dissipative Structures and Weak Turbulence, Academic Press, Boston, MA, USA, 1990
[39] Stability of lamellar eutectic growth, Acta Mater., Volume 56 (2008), p. 1348
[40] Eutectic growth in three dimensions, Metall. Mater. Trans. A, Volume 38A (2007) no. 7, pp. 1417-1425
[41] Role of transverse temperature gradients in the generation of lamellar eutectic solidification patterns, Acta Mater., Volume 58 (2010), pp. 1761-1769
[42] Dynamics of rod eutectic growth patterns in confined geometry, Aachen, Germany/Rolduc, The Netherlands, 7–10 June 2011 (IOP Conference Series – Materials Science and Engineering), Volume vol. 27 (2012) | DOI
[43] Defects and multistability in eutectic solidification patterns, Europhys. Lett., Volume 90 (2010), p. 26010
[44] Long-time dynamics of the directional solidification of rodlike eutectics, Phys. Rev. E, Volume 79 (2009)
[45] Dynamic instabilities of rod-like eutectic growth patterns: a real-time study, Acta Mater., Volume 61 (2013), pp. 6802-6808 | DOI
[46] Control and interpretation of finite-size effects and initial morphology in directional solidification of a rod-type eutectic transparent metal-analog, JOM, Volume 64 (2012), pp. 68-75 | DOI
[47] Microstructure and physical properties of superionic eutectic composites of the LiF–RF3 ( earth element) system, Solid State Ion., Volume 119 (1999), pp. 173-180
[48] Orientation relationship in univariant Al–Cu–Ag eutectics, Trans. Indian Inst. Met., Volume 58 (2005), pp. 545-551
[49] The formation of lamellar-eutectic grains in thin samples, Metall. Mater. Trans. A, Volume 32 (2001), pp. 2039-2048 | DOI
[50] Phase-field investigation of rod eutectic morphologies under geometrical confinement, Phys. Rev. E, Volume 84 (2011) | DOI
[51] Eutectic grains, Adv. Mater. Res., Volume 5 (1971), pp. 83-216
[52] Multiphase solidification in multicomponent alloys, Mater. Sci. Eng., R Rep., Volume 46 (2004), pp. 1-49 | DOI
[53] Lamellar eutectic growth with anisotropic interphase boundaries: experimental study using rotational directional solidification, Acta Mater., Volume 60 (2012), pp. 3206-3214
[54] A theory of thin lamellar eutectic growth with anisotropic interphase boundaries, Acta Mater., Volume 60 (2012), pp. 3199-3205
[55] Interphase anisotropy effects on lamellar eutectics: a numerical study, Phys. Rev. E, Volume 91 (2015) | DOI
[56] Influence of interphase anisotropy on lamellar eutectic growth patterns, Trans. Indian Inst. Met., Volume 68 (2015), pp. 1235-1238 | DOI
[57] Traveling waves, two-phase fingers, and eutectic colonies in thin-sample directional solidification of a ternary eutectic alloy, Phys. Rev. E, Volume 61 (2000), pp. 3757-3770
[58] Eutectic colony formation: a phase-field study, Phys. Rev. E, Volume 66 (2002)
[59] Phase equilibria and eutectic growth in quaternary organic alloys amino-methyl-propanediol–(D)camphor–neopentylglycol–succinonitrile (AMPD–DC–NPG–SCN), J. Cryst. Growth, Volume 297 (2006), pp. 117-132 | DOI
[60] Spiral two-phase dendrites, Phys. Rev. Lett., Volume 104 (2010) | DOI
[61] Scaling theory of two-phase dendritic growth in undercooled ternary melts, Phys. Rev. Lett., Volume 112 (2014) | DOI
[62] Ternary eutectic dendrites: pattern formation and scaling properties, J. Chem. Phys. (2015), p. 1
[63] Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys, Phys. Rev. E, Volume 83 (2011) | DOI
[64] Stability of three-phase ternary-eutectic growth patterns in thin sample, Acta Mater., Volume 109 (2016), pp. 259-266 | DOI
Cited by Sources:
Comments - Policy