Comptes Rendus
Vibro-acoustic modeling and validation using viscoelastic material
Comptes Rendus. Mécanique, Volume 345 (2017) no. 3, pp. 208-220.

In aerospace industries, on-board electronics are carried during flight, and such equipment must be qualified to withstand the loads to which they are exposed. In this fashion, the knowledge of the different dynamic aspects of excitations and the behavior of structures, components and/or acoustic enclosures are crucial to have controlled and performing space systems. Passive control techniques using viscoelastic materials (VEM) are widely applied and their effects on space systems must be studied aiming to obtain adequate operational environments. The effect of damping insertion on the dynamic behavior of a vibro-acoustic system is assessed in this work. A coupled structural–acoustic system, composed by a VEM coated aluminum panel and an acoustic box, is modeled by Finite Element Method (FEM). On the other side, tests are preformed using the KU Leuven facilities to validate the FEM model. Numerical vs. experimental comparisons were done and acceptable agreement was obtained. On the other side, it was found that sound inside the box reduces due to the smaller sound radiation generated by the treated panel.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.01.001
Mots clés : Vibro-acoustics, Passive control technique, Viscoelastic material, Finite element method, Fractional derivative method
Rogério Pirk 1 ; Stijn Jonckheere 2 ; Bert Pluymers 2 ; Wim Desmet 2

1 Institute of Aeronautics and Space/Technological Institute of Aeronautics, Praça Marechal Eduardo Gomes, 50, CEP 12228-904, São José dos Campos, Brazil
2 KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300, B-3001, Heverlee, Belgium
@article{CRMECA_2017__345_3_208_0,
     author = {Rog\'erio Pirk and Stijn Jonckheere and Bert Pluymers and Wim Desmet},
     title = {Vibro-acoustic modeling and validation using viscoelastic material},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {208--220},
     publisher = {Elsevier},
     volume = {345},
     number = {3},
     year = {2017},
     doi = {10.1016/j.crme.2017.01.001},
     language = {en},
}
TY  - JOUR
AU  - Rogério Pirk
AU  - Stijn Jonckheere
AU  - Bert Pluymers
AU  - Wim Desmet
TI  - Vibro-acoustic modeling and validation using viscoelastic material
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 208
EP  - 220
VL  - 345
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2017.01.001
LA  - en
ID  - CRMECA_2017__345_3_208_0
ER  - 
%0 Journal Article
%A Rogério Pirk
%A Stijn Jonckheere
%A Bert Pluymers
%A Wim Desmet
%T Vibro-acoustic modeling and validation using viscoelastic material
%J Comptes Rendus. Mécanique
%D 2017
%P 208-220
%V 345
%N 3
%I Elsevier
%R 10.1016/j.crme.2017.01.001
%G en
%F CRMECA_2017__345_3_208_0
Rogério Pirk; Stijn Jonckheere; Bert Pluymers; Wim Desmet. Vibro-acoustic modeling and validation using viscoelastic material. Comptes Rendus. Mécanique, Volume 345 (2017) no. 3, pp. 208-220. doi : 10.1016/j.crme.2017.01.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.01.001/

[1] O.C. Zienkiewicz; R.L. Taylor The Finite Element Method – the Three Volume Set, Butterworth–Heinemann, 2005

[2] O. Von Estorff Boundary Elements in Acoustics: Advances and Applications (Applicable Mathematics Series), WIT Press, Southampton, UK, 2007

[3] R.H. Lyon; R.G. DeJong Theory and Application of Statistical Energy Analysis, 1995

[4] W. Desmet A Wave Based Prediction Technique for Coupled Vibro-Acoustic Analysis, Department of Mechanical Engineering, Faculty of Engineering, Katholieke Universiteit Leuven, Belgium, 1998 (Ph.D. Thesis)

[5] P.J. Shorter; R.S. Langley Vibro-acoustic analysis of complex systems, J. Sound Vib., Volume 288 (2005), pp. 669-699

[6] K. Menard Dynamic Mechanical Analysis: A Practical Introduction, CRC Press, Boca Raton, FL, USA, 2008

[7] R. Pirk; L. Rouleau; W. Desmet; B. Pluymers Validating the modeling of sandwich structures with constrained layer damping using fractional derivative models, J. Braz. Soc. Mech. Sci. Eng., Volume 38 (2016), p. 1959 | DOI

[8] W. Desmet; P. Sas Introduction to Numerical Acoustics, Department of Mechanical Engineering, Faculty of Engineering, Katholieke Universiteit Leuven, Belgium, 2001 (Notes of Grasmech Course)

[9] R. Ohayon; C. Soize Structural Acoustics and Vibrations, Academic Press, 1998

[10] C.W. Bert Material damping: an introductory review of mathematic measures and experimental techniques, J. Sound Vib., Volume 29 (1973) no. 2, pp. 129-153

[11] S.W. Park Analytical modeling of viscoelastic dampers for structural and vibration control, Int. J. Solids Struct., Volume 38 (2001), pp. 8065-8092

[12] E.E. Ungar Loss factors of viscoelastic systems in terms energy concepts, J. Acoust. Soc. Am., Volume 34 (1962) no. 7, p. 954

[13] R. Ohayon; C. Soize Advanced Computational Vibroacoustics, Cambridge University Press, Cambridge, UK, 2014

[14] M. Vivolo Vibro-Acoustic Characterization of Lightweight Panels by Using a Small Cabin, Department of Mechanical Engineering, Faculty of Engineering, Katholieke Universiteit Leuven, Belgium, 2013 (Ph.D. Thesis)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Problèmes de vibro-impact : étude de la dépendance par rapport aux données

Laetitia Paoli

C. R. Math (2004)


Algorithme de type ‘sweeping process’ pour un problème de vibro-impact avec un opérateur d'inertie non trivial

Raoul Dzonou; Manuel D.P. Monteiro Marques; Laetitia Paoli

C. R. Méca (2007)


Experimental evidence of energy pumping in acoustics

Bruno Cochelin; Philippe Herzog; Pierre-Olivier Mattei

C. R. Méca (2006)