Comptes Rendus
Stochastic modeling and generation of random fields of elasticity tensors: A unified information-theoretic approach
Comptes Rendus. Mécanique, Volume 345 (2017) no. 6, pp. 399-416.

In this Note, we present a unified approach to the information-theoretic modeling and simulation of a class of elasticity random fields, for all physical symmetry classes. The new stochastic representation builds upon a Walpole tensor decomposition, which allows the maximum entropy constraints to be decoupled in accordance with the tensor (sub)algebras associated with the class under consideration. In contrast to previous works where the construction was carried out on the scalar-valued Walpole coordinates, the proposed strategy involves both matrix-valued and scalar-valued random fields. This enables, in particular, the construction of a generation algorithm based on a memoryless transformation, hence improving the computational efficiency of the framework. Two applications involving weak symmetries and sampling over spherical and cylindrical geometries are subsequently provided. These numerical experiments are relevant to the modeling of elastic interphases in nanocomposites, as well as to the simulation of spatially dependent wood properties for instance.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.05.001
Mots clés : Information theory, Maximum entropy principle, Random fields, Elasticity, Stochastic differential equation, Symmetry classes
Brian Staber 1 ; Johann Guilleminot 1

1 Université Paris-Est, Laboratoire “Modélisation et simulation multi-échelle”, MSME UMR 8208 CNRS, 5, bd Descartes, 77454 Marne-la-Vallée, France
@article{CRMECA_2017__345_6_399_0,
     author = {Brian Staber and Johann Guilleminot},
     title = {Stochastic modeling and generation of random fields of elasticity tensors: {A} unified information-theoretic approach},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {399--416},
     publisher = {Elsevier},
     volume = {345},
     number = {6},
     year = {2017},
     doi = {10.1016/j.crme.2017.05.001},
     language = {en},
}
TY  - JOUR
AU  - Brian Staber
AU  - Johann Guilleminot
TI  - Stochastic modeling and generation of random fields of elasticity tensors: A unified information-theoretic approach
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 399
EP  - 416
VL  - 345
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2017.05.001
LA  - en
ID  - CRMECA_2017__345_6_399_0
ER  - 
%0 Journal Article
%A Brian Staber
%A Johann Guilleminot
%T Stochastic modeling and generation of random fields of elasticity tensors: A unified information-theoretic approach
%J Comptes Rendus. Mécanique
%D 2017
%P 399-416
%V 345
%N 6
%I Elsevier
%R 10.1016/j.crme.2017.05.001
%G en
%F CRMECA_2017__345_6_399_0
Brian Staber; Johann Guilleminot. Stochastic modeling and generation of random fields of elasticity tensors: A unified information-theoretic approach. Comptes Rendus. Mécanique, Volume 345 (2017) no. 6, pp. 399-416. doi : 10.1016/j.crme.2017.05.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.05.001/

[1] A. Nouy; C. Soize Random field representations for stochastic elliptic boundary value problems and statistical inverse problems, Eur. J. Appl. Math., Volume 25 (2014) no. 03, pp. 339-373

[2] C. Soize Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial derivative operators, Comput. Methods Appl. Mech. Eng., Volume 195 (2006), pp. 26-64

[3] M. Grigoriu Probabilistic models for stochastic elliptic partial differential equations, J. Comput. Phys., Volume 229 (2010), pp. 8406-8429

[4] P. Ciarlet Mathematical Elasticity, vol. I: Three-Dimensional Elasticity, Elsevier Science Publishers, 1988

[5] M. Grigoriu Microstructure models and material response by extreme value theory, SIAM/ASA J. Uncertain. Quantificat., Volume 4 (2016) no. 1, pp. 190-217

[6] E. Jaynes Information theory and statistical mechanics I, Phys. Rev., Volume 106 (1957) no. 4, pp. 620-630

[7] E. Jaynes Information theory and statistical mechanics II, Phys. Rev., Volume 108 (1957) no. 2, pp. 171-190

[8] J. Guilleminot; A. Noshadravan; C. Soize; R. Ghanem A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures, Comput. Methods Appl. Mech. Eng., Volume 200 (2011), pp. 1637-1648

[9] J. Guilleminot; C. Soize On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties, J. Elast., Volume 111 (2013), pp. 109-130

[10] J. Guilleminot; C. Soize Stochastic model and generator for random fields with symmetry properties: application to the mesoscopic modeling of elastic random media, SIAM J. Multiscale Model. Simul., Volume 11 (2013), pp. 840-870

[11] B. Staber; J. Guilleminot Approximate solutions of Lagrange multipliers for information-theoretic random field models, SIAM/ASA J. Uncertain. Quantificat., Volume 3 (2015), pp. 599-621

[12] A. Malyarenko; M. Ostoja-Starzewski A random field formulation of Hooke's law in all elasticity classes, J. Elast., Volume 34 (2017) no. 2, pp. 269-302

[13] M. Ostoja-Starzewski Microstructural Randomness and Scaling in Mechanics of Materials, Modern, Mechanics and Mathematics Series, Chapman & Hall/CRC/Taylor & Francis, 2008

[14] C. Soize A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probab. Eng. Mech., Volume 15 (2000) no. 3, pp. 277-294

[15] J. Guilleminot; C. Soize Stochastic modeling of anisotropy in multiscale analysis of heterogeneous materials: a comprehensive overview on random matrix approaches, Mech. Mater., Volume 44 (2012), pp. 35-46

[16] M.M. Mehrabadi; S.C. Cowin Eigentensors of linear anisotropic elastic materials, Q. J. Mech. Appl. Math., Volume 43 (1990) no. 1, pp. 15-41

[17] I. Babuška; R. Tempone; G.E. Zouraris Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation, Comput. Methods Appl. Mech. Eng., Volume 194 (2005), pp. 1251-1294

[18] J. Guilleminot; C. Soize Generalized stochastic approach for constitutive equation in linear elasticity: a random matrix model, Int. J. Numer. Methods Biomed. Eng., Volume 90 (2012) no. 5, pp. 613-635

[19] L. Walpole Fourth-rank tensors on the thirty-two crystal classes: Multiplication tables, Proc. R. Soc. Lond. A, Volume 391 (1984), pp. 149-179

[20] R. Balian Random matrices and information theory, Il Nuovo Cimento B, Volume 57 (1968) no. 1, pp. 183-193

[21] S. Boyd; L. Vandenberghe Convex Optimization, Cambridge University Press, 2004

[22] R.M. Dudley The size of compact subsets of Hilbert spaces and continuity of Gaussian processes, J. Funct. Anal., Volume 1 (1967), pp. 290-330

[23] J. Guilleminot; C. Soize Itô SDE–based generator for a class of non-Gaussian vector-valued random fields in uncertainty quantification, SIAM J. Sci. Comput., Volume 36 (2014), p. A2763-A2786

[24] F. Lindgren; H. Rue; J. Lindström An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 74 (2011) no. 4, pp. 423-498

[25] G.-A. Fuglstad; D. Simpson; F. Lindgren; H. Rue Exploring a new class of nonstationary spatial Gaussian random fields with varying local anisotropy, Stat. Sin., Volume 133 (2015), pp. 25-115

[26] G.-A. Fuglstad; D. Simpson; F. Lindgren; H. Rue Does non-stationary spatial data always require non-stationary random fields?, Spat. Stat., Volume 14 (2015), pp. 505-531

[27] T.-T. Le; J. Guilleminot; C. Soize Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite, Comput. Methods Appl. Mech. Eng., Volume 303 (2016), pp. 430-449

Cité par Sources :

Commentaires - Politique